Star-shaped Poly(2-oxazoline)s by Dendrimer Endcapping
Hanneke M. L. Lambermont-Thijs A , Martin W. M. Fijten A , Ulrich S. Schubert A B D and Richard Hoogenboom A C DA Laboratory of Macromolecular Chemistry and Nanoscience, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
B Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
C Supramolecular Chemistry group, Department of Organic Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium.
D Corresponding authors. Email: ulrich.schubert@uni-jena.de; richard.hoogenboom@ugent.be
Australian Journal of Chemistry 64(8) 1026-1032 https://doi.org/10.1071/CH11128
Submitted: 1 April 2011 Accepted: 5 May 2011 Published: 19 August 2011
Abstract
The synthesis of star-shaped poly(2-ethyl-2-oxazoline) is reported by direct end-capping of the living polymer chains with dendritic multiamines. The end-capping kinetics after addition of a first generation polypropylenimine dendrimer are discussed based on monitoring by size exclusion chromatography, revealing less efficient end-capping with larger poly(2-ethyl-2-oxazoline) chains and increasing dendrimer generation. In addition, it is demonstrated that the solution viscosity and cloud point temperature of the star-shaped polymers are much less affected by chain length compared with their linear analogues.
References
[1] M. Mishra, S. Kobayashi, Star and Hyperbranched Polymers 1999 (Marcel Dekker Inc.: New York, NY).[2] K. Inoue, Prog. Polym. Sci. 2000, 25, 453.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsVylurs%3D&md5=8ca7a3927ec06192f83409b7ff97cef4CAS |
[3] N. Hadjichristidis, J. Polym. Sci. A Polym. Chem. 1999, 37, 857.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVait7Y%3D&md5=ed7f8e2aefc63225c8f4ab62a0287831CAS |
[4] N. Hadjichristidis, A. Guyot, L. J. Fetters, Macromolecules 1978, 11, 668.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXlsVOhtLg%3D&md5=b9fb31b4bc636a14d8efa4534ed3fab2CAS |
[5] M. Morton, T. Helminiak, S. Gadkary, F. Bueche, J. Polym. Sci., Polym. Phys. Ed. 1962, 57, 471.
| 1:CAS:528:DyaF38XktFWnu7Y%3D&md5=974d3b5861a6040133fc1ea9aba24a75CAS |
[6] T. M. Marsalkó, I. Majoros, J. P. Kennedy, Polym. Bull. 1993, 31, 665.
| Crossref | GoogleScholarGoogle Scholar |
[7] L. M. Tanghe, E. J. Goethals, e-Polymer 2001, 017.
[8] L. M. Van Renterghem, E. J. Goethals, F. E. Du Prez, Macromolecules 2006, 39, 528.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFWnug%3D%3D&md5=627a3802b6003b7ae2b88b40886f352fCAS |
[9] H. Gao, K. Matyjaszewski, Prog. Polym. Sci. 2009, 34, 317.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsl2hsL8%3D&md5=46d66688d531c70971690483b941d772CAS |
[10] A. Heise, J. L. Hedrick, M. Trollsas, R. D. Miller, C. W. Frank, Macromolecules 1999, 32, 231.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvFKiurw%3D&md5=1786cb230732babfeb651f3a10d232dbCAS |
[11] L. M. Van Renterghem, M. Lammers, F. E. Du Prez, J. Am. Chem. Soc. 2008, 130, 10802.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosF2ntr4%3D&md5=cd7d6048284fce2c8b707365b55d6758CAS |
[12] X. Hao, E. Malmström, T. P. Davis, M. H. Stenzel, C. Barner-Kowollik, Aust. J. Chem. 2005, 58, 483.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFymsb4%3D&md5=7b5ceeef9249cfc52d220197e3ea2e04CAS |
[13] C. Barner-Kowollik, T. P. Davis, M. H. Stenzel, Aust. J. Chem. 2006, 59, 719.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFeqsr%2FP&md5=108ccaada2ebed056b920ca76bfe48aeCAS |
[14] J. T. Wiltshire, G. G. Qiao, Aust. J. Chem. 2007, 60, 699.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKgur7M&md5=5d1043f873e10b7fba16518a9b7dff23CAS |
[15] S. Kobayashi, Prog. Polym. Sci. 1990, 15, 751.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVOrtrg%3D&md5=c782041b89b5048631a683d2112bff44CAS |
[16] K. Aoi, M. Okada, Prog. Polym. Sci. 1996, 21, 151.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitVeltbo%3D&md5=103acf80ea8e43d77f4105d8085e1de5CAS |
[17] R. Hoogenboom, Macromol. Chem. Phys. 2007, 208, 18.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1OrsLY%3D&md5=6d24aac29f246008d4540af022ad7bd6CAS |
[18] R. Hoogenboom, Angew. Chem. Int. Ed. 2009, 48, 7978.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Kju7%2FP&md5=c1ceb131b5a51416c3a88d0c0ac8f487CAS |
[19] H. Schlaad, C. Diehl, A. Gress, M. Meyer, A. L. Demirel, Y. Nur, A. Bertin, Macromol. Rapid Commun. 2010, 31, 511.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktFGrt7Y%3D&md5=f3e3e74416d2945d01b5bbd2c47dba79CAS |
[20] A. Makino, A. Kobayashi, J. Polym. Sci. A Polym. Chem. 2010, 48, 1251.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFamsbw%3D&md5=258710ae02e861daa82d45e09ac97cb6CAS |
[21] R. Hoogenboom, Eur. J. Lipid Sci. Technol. 2011, 113, 59.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXks1Omtw%3D%3D&md5=1d973e99d6c814c8d06ef6ebc469f5fbCAS |
[22] N. Adams, U. S. Schubert, Adv. Drug Deliv. Rev. 2007, 59, 1504.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlCrtr%2FP&md5=9b18613e51ed749d74019f7ba632ed3bCAS |
[23] K. Knop, R. Hoogenboom, D. Fischer, U. S. Schubert, Angew. Chem. Int. Ed. 2010, 49, 6288.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVOqtLbN&md5=d972055a1104c91e04d857c2140abe13CAS |
[24] M. Lobert, H. M. L. Thijs, T. Erdmenger, R. Eckardt, C. Ulbricht, R. Hoogenboom, U. S. Schubert, Chem. – Eur. J. 2008, 14, 10396.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVyksLjL&md5=6c2e4c2648d5565eb5c7c475ed342ee5CAS |
[25] M. M. Bloksma, M. M. R. M. Hendrix, U. S. Schubert, R. Hoogenboom, Macromolecules 2010, 43, 4654.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFyksrw%3D&md5=56dbea737d9a59cb1f03c02a802931cbCAS |
[26] K. Kempe, S. Jacobs, H. M. L. Lambermont-Thijs, M. W. M. Fijten, R. Hoogenboom, U. S. Schubert, Macromolecules 2010, 43, 4098.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslKhu78%3D&md5=9ec23f4cb64b59584c61e70f4d97d87dCAS |
[27] J. Y. Chang, H. J. Ji, M. J. Han, S. B. Rhee, S. Cheong, M. Yoon, Macromolecules 1994, 27, 1376.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhs1Gju70%3D&md5=f290fd38d34fc96f198c84e8742dafc0CAS |
[28] K. M. Kim, Y. Ouchi, Y. Chujo, Polym. Bull. 2003, 49, 341.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsVyrtbw%3D&md5=8973c2e947a13ec3b88b57c39cc6750bCAS |
[29] R.-H. Jin, J. Mater. Chem. 2004, 14, 320.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntleisg%3D%3D&md5=49de7488194238b846ea69c4e7fdf9a3CAS |
[30] R.-H. Jin, Adv. Mater. 2002, 14, 889.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlGju7g%3D&md5=6914c2b23be8beefef853fd3fac45163CAS |
[31] R. Hoogenboom, M. W. M. Fijten, G. Kickelbick, U. S. Schubert, Beilstein J. Org. Chem. 2010, 6, 773.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2rsbrJ&md5=dfcc029445a788b345252e2e48a7c191CAS |
[32] T. Ogoshi, S. Hiramitsu, T. Yamagishi, Y. Nakamoto, Macromolecules 2009, 42, 3042.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktl2gt70%3D&md5=ca3871fe22bbb9112760d43415e6aa2dCAS |
[33] U. S. Schubert, O. Nuyken, G. Hochwimmer, J. Macromol. Chem. Pure Appl. Chem. 2000, A37, 645.
| 1:CAS:528:DC%2BD3cXjsFyhsbY%3D&md5=7f955d30b60c8ce8c40f4f5e2ce46c4eCAS |
[34] J. E. McAlvin, S. B. Scott, C. L. Fraser, Macromolecules 2000, 33, 6953.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVOksbs%3D&md5=aedaf8563fb76a74d2c127f85a19cc8dCAS |
[35] S. Kobayashi, H. Uyama, Y. Narita, Macromolecules 1992, 25, 3232.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XisFKisr0%3D&md5=7a2413ac5c53b59fce28531f8237af3cCAS |
[36] R. Luxenhofer, M. Bezen, R. Jordan, Macromol. Rapid Commun. 2008, 29, 1509.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ansrfJ&md5=7a786d56a4c8560b7a3461615f48b217CAS |
[37] M. W. M. Fijten, C. Haensch, B. M. Van Lankvelt, R. Hoogenboom, U. S. Schubert, Macromol. Chem. Phys. 2008, 209, 1887.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ClsLjN&md5=e7c19b796af100771c866c1c00726c42CAS |
[38] Y. S. Park, Y. S. Kang, D. J. Chung, e-Polymer 2002, 16.
| 1:CAS:528:DC%2BD3sXhs1Orsr8%3D&md5=720688aa2edb0c92847dd58a181e8524CAS |
[39] F. Wiesbrock, R. Hoogenboom, M. A. M. Leenen, M. A. R. Meier, U. S. Schubert, Macromolecules 2005, 38, 5025.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktF2ls7w%3D&md5=c88906189b85745b7d80d0411e8ae924CAS |
[40] R. Hoogenboom, U. S. Schubert, J. Polym. Sci. A Polym. Chem. 2003, 41, 2425.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmt1SiurY%3D&md5=fb60ed02881622f5e17f9624f27da28eCAS |
[41] R. Hoogenboom, M. W. M. Fijten, R. M. Paulus, H. M. L. Thijs, S. Hoeppener, G. Kickelbick, U. S. Schubert, Polymer 2006, 47, 75.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCnt77N&md5=f4f857c1dce1097cf3eafce458d2edfcCAS |
[42] P. Lin, C. Clash, E. Pearce, T. K. Kwei, J. Polym. Sci. B Polym. Phys. 1988, 26, 603.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhs1ygurc%3D&md5=3a1461b6864493700804d618dad5a253CAS |
[43] D. Christova, R. Velichkova, W. Loos, E. J. Goethals, F. Du Prez, Polymer 2003, 44, 2255.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitFGrsrs%3D&md5=23452ac809a9e4aa0e046c5839c87ffcCAS |
[44] R. Hoogenboom, H. M. L. Thijs, M. J. H. C. Jochems, B. M. Van Lankvelt, M. W. M. Fijten, U. S. Schubert, Chem. Commun. 2008, 5758.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOmur3N&md5=f0d75e73bae60ab0344a124057d2ea0bCAS |