Cyclizations using Selenium Chemistry for Substituted 3-Hydroxypiperidines and 3-Hydroxypyrrolidines
Matthew A. Cooper A B C and A. David Ward BA Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia.
B Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia.
C Corresponding author. Email: m.cooper@uq.edu.au
Australian Journal of Chemistry 64(10) 1327-1338 https://doi.org/10.1071/CH11073
Submitted: 14 February 2011 Accepted: 27 April 2011 Published: 23 August 2011
Abstract
The development of new methods for the stereoselective synthesis of nitrogen heterocycles is of current interest because of increasing demands for the syntheses of biologically important alkaloids and related compounds. It is shown that selenium-induced cyclization of 4-hydroxy-5-pentenylamines occurs regio- and stereo-selectively to afford cis-3-hydroxy-2-phenylselenomethylpyrrolidines, whereas 5-hydroxy-6-hexenylamines cyclize and give trans-3-hydroxy-2-phenylselenomethylpiperidines, with some compounds forming stable hydrates. In all cases cyclization proceeds regioselectively to give only the exo adducts with moderate to good diastereoselectivity. The reaction appeared to be under kinetic control as product ratios did not alter with time and the separated diastereomers did not interconvert when resubjected to the reaction conditions. These phenylseleno-substituted compounds could be transformed to diols by substitution of the corresponding selenone with a hydroxide ion. Substituted pyrrolidines and piperidines were thus afforded from unsaturated protected amines by electrophilic activation with SeII, followed by oxidation of the intermediate to SeVI and substitution with nucleophiles.
References
[1] M. A. Cooper, S. M. Pyke, A. D. Ward, Bull. Magn. Reson. 1995, 17, 244.[2] H. J. Reich, F. Chow, S. K. Shah, J. Am. Chem. Soc. 1979, 101, 6638.
| Crossref | GoogleScholarGoogle Scholar |
[3] D. L. Klayman, W. H. H. E. Gunther, Organoselenium Compounds: Their Chemistry and Biology 1973 (Wiley-Interscience: New York).
[4] D. Liotta, U. Sunay, H. Santiesteban, W. Markiewicz, J. Org. Chem. 1981, 46, 2605.
| Crossref | GoogleScholarGoogle Scholar |
[5] P. A. Grieco, S. Gilman, M. Nishizawa, J. Org. Chem. 1976, 41, 1485.
| Crossref | GoogleScholarGoogle Scholar |
[6] K. B. Sharpless, R. F. Lauer, J. Org. Chem. 1974, 39, 429.
| Crossref | GoogleScholarGoogle Scholar |
[7] L. Engman, J. Org. Chem. 1989, 54, 884.
| Crossref | GoogleScholarGoogle Scholar |
[8] P. Ho, R. J. Kolt, Can. J. Chem. 1982, 60, 663.
| Crossref | GoogleScholarGoogle Scholar |
[9] D. Liotta, G. Zima, Tetrahedron Lett. 1978, 19, 4977.
| Crossref | GoogleScholarGoogle Scholar |
[10] D. L. J. Clive, G. Chittattu, C. K. Wong, Can. J. Chem. 1977, 55, 3894.
| Crossref | GoogleScholarGoogle Scholar |
[11] G. Cardillo, M. Orena, Tetrahedron 1990, 46, 3321.
| Crossref | GoogleScholarGoogle Scholar |
[12] T. Ninoi, Y. Hasegawa, M. Yoshihara, T. Maeshima, M. Fujii, T. Aida, CE 1989, 4, 709.
[13] D. L. J. Clive, V. Farina, A. Singh, C. K. Wong, W. Kiel, S. Menchen, J. Org. Chem. 1980, 45, 2120.
| Crossref | GoogleScholarGoogle Scholar |
[14] H. Takahata, Y. Banba, T. Momose, Tetrahedron Asymm. 1990, 1, 763.
| Crossref | GoogleScholarGoogle Scholar |
[15] H. Takahata, M. Tajima, Y. Banba, T. Momose, J. Org. Chem. 1991, 56, 240.
| Crossref | GoogleScholarGoogle Scholar |
[16] A. R. Chamberlin, J. Y. L. Chung, J. Am. Chem. Soc. 1983, 105, 3653.
| Crossref | GoogleScholarGoogle Scholar |
[17] R. C. Bernotas, B. Ganem, Tetrahedron Lett. 1984, 25, 165.
| Crossref | GoogleScholarGoogle Scholar |
[18] P. A. Bartlett, in Asymmetric Synthesis (Ed. J. D. Morrison) 1984, p. 411 (Academic Press: New York).
[19] Y. Tamaru, S. Kawamura, S. Sawada, M. Hojo, Z. Ysohida, J. Org. Chem. 1987, 52, 4062.
| Crossref | GoogleScholarGoogle Scholar |
[20] Y. Tamaru, S. Kawamura, T. Bando, K. Tanaka, M. Hojo, Z. Ysohida, J. Org. Chem. 1988, 53, 5491.
| Crossref | GoogleScholarGoogle Scholar |
[21] Y. Tamaru, M. Hojo, Z. Ysohida, J. Org. Chem. 1988, 53, 5731.
| Crossref | GoogleScholarGoogle Scholar |
[22] F. Freeman, K. D. Robarge, Tetrahedron Lett. 1985, 26, 1943.
| Crossref | GoogleScholarGoogle Scholar |
[23] R. C. Bernotas, B. Ganem, Tetrahedron Lett. 1985, 26, 1123.
| Crossref | GoogleScholarGoogle Scholar |
[24] M. A. Cooper, A. D. Ward, Tetrahedron Lett. 1994, 35, 5065.
| Crossref | GoogleScholarGoogle Scholar |
[25] M. A. Cooper, A. D. Ward, Tetrahedron Lett. 1992, 33, 5999.
| Crossref | GoogleScholarGoogle Scholar |
[26] M. A. Cooper, A. D. Ward, Tetrahedron 2004, 60, 7963.
| Crossref | GoogleScholarGoogle Scholar |
[27] F. Marini, S. Sternativo, F. Del Verme, L. Testaferri, M. Tiecco, Adv. Synth. Catal. 2009, 351, 1801.
| Crossref | GoogleScholarGoogle Scholar |
[28] F. Marini, S. Sternativo, F. Del Verme, L. Testaferri, M. Tiecco, Adv. Synth. Catal. 2009, 351, 103.
| Crossref | GoogleScholarGoogle Scholar |
[29] H. J. Reich, J. M. Renga, J. Org. Chem. 1975, 40, 3313.
| Crossref | GoogleScholarGoogle Scholar |
[30] Y. Tamaru, S. Kawamura, K. Tanaka, Z. Ysohida, Tetrahedron Lett. 1984, 25, 1063.
| Crossref | GoogleScholarGoogle Scholar |
[31] N. Rabjohn, Organic Syntheses 1963, Collective Vol. 4 (John Wiley & Sons: New York).
[32] D. Hoppe, F. Nintze, P. Tebben, Angew. Chem. Int. Ed. Engl. 1990, 29, 1422.
| Crossref | GoogleScholarGoogle Scholar |
[33] D. L. J. Clive, Tetrahedron 1978, 34, 1049.
| Crossref | GoogleScholarGoogle Scholar |
[34] S. Raucher, J. Org. Chem. 1977, 42, 2950.
| Crossref | GoogleScholarGoogle Scholar |
[35] M. Tiecco, L. Testaferri, M. Tingoli, D. Bartoli, R. Balducci, J. Org. Chem. 1990, 55, 429.
| Crossref | GoogleScholarGoogle Scholar |
[36] M. Tiecco, L. Testaferri, M. Tingoli, D. Chanelli, D. Bartoli, Tetrahedron 1988, 44, 2273.
| Crossref | GoogleScholarGoogle Scholar |
[37] K. C. Nicolaou, D. A. Claremon, W. E. Barnette, S. P. Seitz, J. Am. Chem. Soc. 1979, 101, 3704.
| Crossref | GoogleScholarGoogle Scholar |
[38] A. R. Chamberlin, D. Milana, P. Dussault, M. C. Mcmills, J. Am. Chem. Soc. 1983, 105, 5819.
| Crossref | GoogleScholarGoogle Scholar |
[39] D. J. Hart, K. Kanai, J. Org. Chem. 1982, 47, 1555.
| Crossref | GoogleScholarGoogle Scholar |
[40] R. Roemmele, H. Rapoport, J. Org. Chem. 1989, 54, 1866.
| Crossref | GoogleScholarGoogle Scholar |
[41] W. R. Ewing, B. D. Harris, K. L. Bhat, M. M. Joullie, Tetrahedron 1986, 42, 2421.
| Crossref | GoogleScholarGoogle Scholar |
[42] H. Takahata, M. Tajima, Y. Banba, T. Momose, CPB 1989, 37, 2550.
[43] H. Takahata, T. Takamatsu, T. Yamazaki, J. Org. Chem. 1989, 54, 4812.
| Crossref | GoogleScholarGoogle Scholar |
[44] M. Gruttadauria, C. Aprile, S. Riela, R. Noto, Tetrahedron Lett. 2001, 42, 2213.
| Crossref | GoogleScholarGoogle Scholar |
[45] A. Bax, G. Morris, J. Magn. Reson. 1981, 42, 501.
[46] F. W. Wehrli, T. Wirthlin, Interpretation of 13C NMR Spectra 1980 (Heydon & Son: London).
[47] M. A. Cooper, A. D. Ward, E. R. T. Tiekink, Z. Krist. 2002, 217, 343.
[48] W. H. Pearson, S. C. Bergmeier, J. P. Williams, J. Org. Chem. 1992, 57, 3977.
| Crossref | GoogleScholarGoogle Scholar |
[49] S. Knapp, F. S. Gibson, J. Org. Chem. 1992, 57, 4802.
| Crossref | GoogleScholarGoogle Scholar |
[50] M. Tokuda, H. Fujita, T. Miyamoto, H. Suginome, Tetrahedron 1993, 49, 2413.
| Crossref | GoogleScholarGoogle Scholar |
[51] D. H. Williams, I. Fleming, Spectroscopic Methods in Organic Chemistry, 3rd edn 1980 (McGraw-Hill Book Company (UK) Ltd.: London).
[52] H. Shinji, S. Hiroyuki, T. Shuichi, K. Hiroshi, R. A. Atsupuruton, Jpn Pat. JP61122269A2 1990.
[53] D. A. Winkler, G. Holan, J. Med. Chem. 1989, 32, 2084.
| Crossref | GoogleScholarGoogle Scholar |
[54] K. Takao, Y. Nigawara, E. Nishino, I. Takagi, K. Maeda, K.-I. Tadano, Tetrahedron 1994, 50, 5681.
| Crossref | GoogleScholarGoogle Scholar |
[55] R. A. Gruters et al., Nature 1987, 330, 74.
| Crossref | GoogleScholarGoogle Scholar |
[56] D. A. Winkler, G. Holan, J. Med. Chem. 1989, 32, 2084.
| Crossref | GoogleScholarGoogle Scholar |
[57] D. Marion, K. Wuthrich, Biochem. Biophys. Res. Commun. 1983, 113, 967.
| Crossref | GoogleScholarGoogle Scholar |