Cancer-targeting Antibody–Drug Conjugates: Site-specific Conjugation of Doxorubicin to Anti-EGFR 528 Fab′ through a Polyethylene Glycol Linker
Lisa P. T. Hong A , Judith A. Scoble A , Larissa Doughty A , Gregory Coia A and Charlotte C. Williams A BA CSIRO Materials Science and Engineering, 343 Royal Parade, Parkville, Vic. 3052, Australia.
B Corresponding author. Email: charlotte.williams@csiro.au
Charlotte Williams was educated at the University of Western Australia, B.Sc. (Hons), where she was awarded a Ph.D. with distinction under the supervision of Professor M. V. Baker. After postdoctoral research at The University of Oxford with Professor H. L. Anderson, she undertook a research scientist position with Johnson Matthey (U.K.) before returning to Australia and taking up a position at Starpharma Pty. Ltd. where she worked for over 5 years as a senior research chemist and research manager. Since 2009 Charlotte has held a position with CSIRO Materials Science and Engineering where she has been involved in the development of bioconjugation capabilities within the division. She is a member of both the ACS and RSC as well as an active committee member of the RACI. Her current research interests include investigations into unique and interesting methods to conjugate small molecules, peptides or proteins to larger biomolecules such as antibodies. |
Australian Journal of Chemistry 64(6) 779-789 https://doi.org/10.1071/CH11071
Submitted: 12 February 2011 Accepted: 16 March 2011 Published: 27 June 2011
Abstract
Antibody–drug conjugates have been prepared to examine the effect that attaching small-molecule drugs to an antibody fragment has on antibody activity. The anticancer drug doxorubicin was covalently attached through a polyethylene glycol linker to a cancer-targeting, anti-epidermal growth factor receptor antibody fragment (Fab′). The reactivity of maleimide was compared with a substituted maleimide derivative (citraconimide) in conjugation reactions with cysteine residues on a Fab′. Introduction of polyethylene glycol increased aqueous solubility of the cytotoxic drug, which led to an improvement in overall yield of the conjugation reaction with the antibody fragment. Antibody–drug conjugates prepared retained activity of the parent antibody, as determined by antigen binding experiments measured by surface plasmon resonance.
References
[1] R. V. Chari, Acc. Chem. Res. 2008, 41, 98.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt12isLo%3D&md5=e1f69e761d7a21bd5994a989fa81b678CAS | 17705444PubMed |
[2] L. Ducry, B. Stump, Bioconjug. Chem. 2010, 21, 5.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGiu77I&md5=efbb3419449233df05dc3d59ab17e625CAS | 19769391PubMed |
[3] B. Hughes, Nat. Rev. Drug Discov. 2010, 9, 665.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFSisbrE&md5=3abf3fe211a65a97fb2fb3789e00f860CAS | 20811367PubMed |
[4] J. R. Junutula, H. Raab, S. Clark, S. Bhakta, D. D. Leipold, S. Weir, Y. Chen, M. Simpson, S. P. Tsai, M. S. Dennis, Y. Lu, Y. G. Meng, C. Ng, J. Yang, C. C. Lee, E. Duenas, J. Gorrell, V. Katta, A. Kim, K. McDorman, K. Flagella, R. Venook, S. Ross, S. D. Spencer, W. Lee Wong, H. B. Lowman, R. Vandlen, M. X. Sliwkowski, R. H. Scheller, P. Polakis, W. Mallet, Nat. Biotechnol. 2008, 26, 925.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1Wmu7s%3D&md5=9069a57b6df621496e661325f9a753f3CAS | 18641636PubMed |
[5] P. D. Senter, Curr. Opin. Chem. Biol. 2009, 13, 235.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVWltbg%3D&md5=fd25fc01964e4f432fe2885108a13c84CAS | 19414278PubMed |
[6] G. D. Lewis Phillips, G. Li, D. L. Dugger, L. M. Crocker, K. L. Parsons, E. Mai, W. A. Blattler, J. M. Lambert, R. V. Chari, R. J. Lutz, W. L. Wong, F. S. Jacobson, H. Koeppen, R. H. Schwall, S. R. Kenkare-Mitra, S. D. Spencer, M. X. Sliwkowski, Cancer Res. 2008, 68, 9280.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOmt7rK&md5=d937b6209cc8befccb120399dd73df84CAS | 19010901PubMed |
[7] A. Rossi, P. Maione, C. Gridelli, Crit. Rev. Oncol. Hematol. 2006, 59, 139.
| Crossref | GoogleScholarGoogle Scholar | 16806963PubMed |
[8] G. N. Gill, T. Kawamoto, C. Cochet, A. Le, J. D. Sato, H. Masui, C. McLeod, J. Mendelsohn, J. Biol. Chem. 1984, 259, 7755.
| 1:CAS:528:DyaL2cXksFejsL8%3D&md5=4d5202347200a2f7119d6089e24e74d6CAS | 6330079PubMed |
[9] T. Kawamoto, J. Mendelsohn, A. Le, G. H. Sato, C. S. Lazar, G. N. Gill, J. Biol. Chem. 1984, 259, 7761.
| 1:CAS:528:DyaL2cXksV2htbk%3D&md5=e1f8c1aeaa1664170aca09f77278e12aCAS | 6330080PubMed |
[10] T. Kawamoto, J. D. Sato, A. Le, J. Polikoff, G. H. Sato, J. Mendelsohn, Proc. Natl. Acad. Sci. USA 1983, 80, 1337.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhtlyiu7c%3D&md5=e10d8fb07b0866b52c4ab88dc423eb02CAS |
[11] J. D. Sato, T. Kawamoto, A. D. Le, J. Mendelsohn, J. Polikoff, G. H. Sato, Mol. Biol. Med. 1983, 1, 511.
| 1:CAS:528:DyaL2cXls1Cgu70%3D&md5=3dfcb03c5171fb59769f05a2ba13a236CAS | 6094961PubMed |
[12] Z. Fan, J. Baselga, H. Masui, J. Mendelsohn, Cancer Res. 1993, 53, 4637.
| 1:CAS:528:DyaK2cXitlM%3D&md5=b62cf9bc712e3595bafd70bb031f8752CAS | 8402640PubMed |
[13] E. S. Kim, F. R. Khuri, R. S. Herbst, Curr. Opin. Oncol. 2001, 13, 506.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Oqs7c%3D&md5=0a655d65971bb700414470595f0c0f70CAS | 11673692PubMed |
[14] D. J. Jonker, C. J. O’Callaghan, C. S. Karapetis, J. R. Zalcberg, D. Tu, H. J. Au, S. R. Berry, M. Krahn, T. Price, R. J. Simes, N. C. Tebbutt, G. van Hazel, R. Wierzbicki, C. Langer, M. J. Moore, N. Engl. J. Med. 2007, 357, 2040.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWis7rI&md5=01a5d49876ed9af217aca594326eddd5CAS | 18003960PubMed |
[15] R. S. Herbst, E. S. Kim, P. M. Harari, Expert Opin. Biol. Ther. 2001, 1, 719.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlslWjt7s%3D&md5=4afab80e614de5760f10478af048689cCAS | 11727507PubMed |
[16] C. Rader, Curr. Protoc. Protein Sci. 2009, 55, 6.9.1–6.9.14. Available online at: http://onlinelibrary.wiley.com/doi/10.1002/0471140864.ps0609s55/pdf.
[17] G. T. Hermanson, Bioconjugate Techniques, 2nd edn 2008 (Elsevier: London).
[18] A. A. Wakankar, M. B. Feeney, J. Rivera, Y. Chen, M. Kim, V. K. Sharma, Y. J. Wang, Bioconjug. Chem. 2010, 21, 1588.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVyltbk%3D&md5=a9d74baa61b9f972bc559db612d1d260CAS | 20698491PubMed |
[19] D. P. Humphreys, S. P. Heywood, A. Henry, L. Ait-Lhadj, P. Antoniw, R. Palframan, K. J. Greenslade, B. Carrington, D. G. Reeks, L. C. Bowering, S. West, H. A. Brand, Protein Eng. Des. Sel. 2007, 20, 227.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvFWqu78%3D&md5=5e576c819445e2f1e268e8714121f5afCAS | 17452434PubMed |
[20] C. Gaina, V. Gaina, Designed Monom. Polym. 2005, 8, 145.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslant70%3D&md5=58d735e58347edbce0e0201da37a1f3bCAS |
[21] S. Girouard, M. H. Houle, A. Grandbois, J. W. Keillor, S. W. Michnick, J. Am. Chem. Soc. 2005, 127, 559.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVyltr%2FI&md5=7584a7b43cef601e93efe3934f7b1610CAS | 15643880PubMed |
[22] M. E. Smith, F. F. Schumacher, C. P. Ryan, L. M. Tedaldi, D. Papaioannou, G. Waksman, S. Caddick, J. R. Baker, J. Am. Chem. Soc. 2010, 132, 1960.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptl2rug%3D%3D&md5=5b40d980410bbf4db8ca024cc4b7429fCAS | 20092331PubMed |
[23] S. Rollas, Ş. G. Küçükgüzel, Open Drug Deliv. J. 2008, 2, 77.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1GqtQ%3D%3D&md5=a96842d9208b204044c155a5d0a441c9CAS |
[24] T. R. Triton, G. Yee, Science 1982, 217, 248.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL383itlOqsw%3D%3D&md5=2c2560674a20acbeb39955d7336031ecCAS | 7089561PubMed |
[25] M. C. Garnett, Adv. Drug Deliv. Rev. 2001, 53, 171.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1ahsbY%3D&md5=990c92da4be8283f467c2eeb99a36d92CAS | 11731026PubMed |
[26] B. M. Mueller, W. A. Wrasidlo, R. A. Reisfeld, Bioconjug. Chem. 1990, 1, 325.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlvVChs74%3D&md5=c67158a82a83af4bf7c07f83656b4a7dCAS | 1711377PubMed |
[27] K. R. West, S. Otto, Curr. Drug Discov. Technol. 2005, 2, 123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslOgu78%3D&md5=913f98595172830dedcd398845985233CAS | 16472224PubMed |
[28] D. Willner, P. A. Trail, S. J. Hofstead, H. D. King, S. J. Lasch, G. R. Braslawsky, R. S. Greenfield, T. Kaneko, R. A. Firestone, Bioconjug. Chem. 1993, 4, 521.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmslylsrs%3D&md5=5069bd0f9b70785cfc770515d1f8d555CAS | 7508268PubMed |
[29] A. Nagy, A. Plonowski, A. V. Schally, Proc. Natl. Acad. Sci. USA 2000, 97, 829.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXot1amsg%3D%3D&md5=c32ec6e1f319c426171ae05d740874bcCAS |
[30] R. M. de Figueiredo, P. Oczipka, R. Froeschl, M. Christmann, Synthesis 2008, 1316.
| 1:CAS:528:DC%2BD1cXls1aitrw%3D&md5=062965b5610e1d88f1a05d95d57f38f9CAS |
[31] J. Kalia, R. T. Raines, Bioorg. Med. Chem. Lett. 2007, 17, 6286.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFOjt7rN&md5=c31b5701713ecd585c60296131b10c87CAS | 17881230PubMed |
[32] B. D. Mather, K. Viswanathan, K. M. Miller, T. E. Long, Prog. Polym. Sci. 2006, 31, 487.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvFykt7g%3D&md5=247a886182e7f0d3a144d6d8ebdef2cbCAS |
[33] R. G. Barradas, S. Fletcher, J. D. Porter, Can. J. Chem. 1976, 54, 1400.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xlt1aru7k%3D&md5=d8b71234e3b46700a3588ba8a48960c8CAS |
[34] C. I. Manley-King, G. Terre’Blanche, N. Castagnoli, C. I. Manley-King, G. Terre’Blanche, N. Castagnoli, Bioorg. Med. Chem. 2009, 17, 3104.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVWksL4%3D&md5=420192d2b28b3ab47e904beac29c62f6CAS | 19324554PubMed |
[35] S. J. Blincko, D. A. Blackwell, E. J. Doran, B. C. Roders, Patent No: US 2008/0220448 A1 2008.
[36] D. O. Kiesewetter, G. Kramer-Marek, Y. Ma, J. Capala, J. Fluor. Chem. 2008, 129, 799.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVyitrbP&md5=d1a3aa2b35a4abbdabccbd03e269829aCAS | 19727427PubMed |
[37] D. E. Shafer, J. K. Inman, A. Lees, Anal. Biochem. 2000, 282, 161.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktVGqsrw%3D&md5=dc6c064e9cd25e22cc57993a57339cffCAS | 10860517PubMed |
[38] B. L. Brizzard, R. G. Chubet, D. L. Vizard, Biotechniques 1994, 16, 730.
| 1:CAS:528:DyaK2cXmsFSjsbc%3D&md5=6b4bb6fce4c5c25c0c85e5c5126f9967CAS | 8024796PubMed |
[39] S. Jevševar, M. Kunstelj, V. G. Porekar, Biotechnol. J. 2010, 5, 113.
| Crossref | GoogleScholarGoogle Scholar | 20069580PubMed |
[40] P. A. van der Merwe, Surface Plasmon Resonance Protein–Ligand Interactions: a Practical Approach 2000 (Eds S. Harding, P. Z. Chowdhury) (Oxford University Press: Oxford).
[41] T. C. Elleman, T. Domagala, N. M. McKern, M. Nerrie, B. Lonnqvist, T. E. Adams, J. Lewis, G. O. Lovrecz, P. A. Hoyne, K. M. Richards, G. J. Howlett, J. Rothacker, R. N. Jorissen, M. Lou, T. P. Garrett, A. W. Burgess, E. C. Nice, C. W. Ward, Biochemistry 2001, 40, 8930.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVSgsL4%3D&md5=38e0eb8aec0840ef5e66641455e035a0CAS | 11467954PubMed |
[42] T. P. Garrett, N. M. McKern, M. Lou, T. C. Elleman, T. E. Adams, G. O. Lovrecz, H. J. Zhu, F. Walker, M. J. Frenkel, P. A. Hoyne, R. N. Jorissen, E. C. Nice, A. W. Burgess, C. W. Ward, Cell 2002, 110, 763.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsFKisL4%3D&md5=6a6755c8fc2c8bbc10e7d860165afaf2CAS | 12297049PubMed |
[43] J. A. MacDiarmid, N. B. Amaro-Mugridge, J. Madrid-Weiss, I. Sedliarou, S. Wetzel, K. Kochar, V. N. Brahmbhatt, L. Phillips, S. T. Pattison, C. Petti, B. Stillman, R. M. Graham, H. Brahmbhatt, Nat. Biotechnol. 2009, 27, 643.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslKqtLY%3D&md5=7e88beb8f48d4835840e5135f6102b50CAS | 19561595PubMed |
[44] H. R. Ihre, O. L. Padilla De Jesus, F. C. Szoka, J. M. Frechet, Bioconjug. Chem. 2002, 13, 443.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtVKhur0%3D&md5=e4e349bfca2c91d0685ba9bc78b8aa6dCAS | 12009932PubMed |
[45] G. M. Dubowchik, R. A. Firestone, L. Padilla, D. Willner, S. J. Hofstead, K. Mosure, J. O. Knipe, S. J. Lasch, P. A. Trail, Bioconjug. Chem. 2002, 13, 855.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFentr8%3D&md5=7e54a356e31420d090354eb738021db3CAS | 12121142PubMed |
[46] R. Duncan, Adv. Drug Deliv. Rev. 2009, 61, 1131.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWht7fL&md5=6c9b3504c29bfccb11b3305f1b65d95eCAS | 19699249PubMed |
[47] T. Bravman, V. Bronner, K. Lavie, A. Notcovich, G. A. Papalia, D. G. Myszka, Anal. Biochem. 2006, 358, 281.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSksL7K&md5=75a69aebf0b43aab02cdf3dfc3dd438fCAS | 16962556PubMed |