Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Investigating the Avidin-Biotin Interaction on Chiral Soft Structure Platforms

K. Vijaya Krishna A and Sandeep Verma A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, UP, India.

B Corresponding author. Email: sverma@iitk.ac.in

Australian Journal of Chemistry 64(5) 576-582 https://doi.org/10.1071/CH11020
Submitted: 11 January 2011  Accepted: 5 April 2011   Published: 30 May 2011

Abstract

The synthesis of a novel biotin-cholesterol conjugate is described together with its propensity to self-assemble and exhibit interesting optical behaviour, when examined under cross-polarized light. The avidin-biotin interaction performed with this conjugate reveals loss of birefringence suggesting that such constructs could possibly be applied for optical tracking of important biological interactions.


References

[1]  (a) M. A. Cooper, Anal. Bioanal. Chem. 2003, 377, 834.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1ersLc%3D&md5=55ce407fb8ffc5e96003a2b23bf781b1CAS | 12904946PubMed |
      (b) P. S. Waggoner, H. G. Craighead, Lab Chip 2007, 7, 1238.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) T. K. Dam, C. F. Brewer, Chem. Rev. 2002, 102, 387.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Y. S. Choi, C. W. Yoon, H. D. Lee, M. Park, J. W. Park, Chem. Commun. 2004, 11, 1316.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  G. Gauglitz, Anal. Bioanal. Chem. 2005, 381, 141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gitbw%3D&md5=841688ade6ce51b2fa004caf8ecd18c3CAS | 15700161PubMed |

[3]  J. J. Hwang, S. N. Iyer, L. Li, R. Claussen, D. A. Harrington, S. I. Stupp, Proc. Natl. Acad. Sci. USA 2002, 99, 9662.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlslKhu78%3D&md5=08d02999286a7bba5e9a829eea58995dCAS |

[4]  Nonappa, U. Maitra, Org. Biomol. Chem. 2008, 6, 657 and references cited therein. 10.1039/B714475J
      (b) J. X. Peng, K. Q. Liu, J. Liu, Q. H. Zhang, X. Feng, Y. Fang, Langmuir 2008, 24, 2992.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Zinic, F. Vogtle, F. Fages, Top. Curr. Chem. 2005, 256, 39.

[5]  (a) C. V. Yelamaggad, G. Shanker, U. S. Hiremath, S. K. Prasad, J. Mater. Chem. 2008, 18, 2927.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntl2mtL4%3D&md5=411c561e7f1cc9db2bae80bdb50b5358CAS |
      (b) S. Shinkai, K. J. Murata, Mater. Chem. 1998, 8, 485.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) Z. C. Li, W. Jin, F. M. Li, Chin. Chem. Lett. 1999, 10, 1007.
         | 1:CAS:528:DC%2BD3cXis12qsA%3D%3D&md5=cca31d4f54f813399afa5cfde777d095CAS |
      (b) Y. Li, K. Liu, J. Liu, J. Peng, X. Feng, Y. Fang, Langmuir 2006, 22, 7016.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. W. Reed, E. A. Lukhtanov, V. V. Gorn, D. D. Lucas, J. H. Zhou, S. B. Pai, Y. C. Cheng, R. B. Meyer, , J. Med. Chem. 1995, 38, 4587.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) I. Pfeiffer, F. Hook, J. Am. Chem. Soc. 2004, 126, 10224.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. Manoharan, K. L. Tivel, P. D. Cook, Tetrahedron Lett. 1995, 36, 3651.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) P. Chaltin, A. Margineanu, D. Marchand, A. Van Aerschot, J. Rozenski, F. De Schryver, A. Herrmann, P. Herdewijn, Bioconjug. Chem. 2005, 16, 827.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) M. Numata, K. Sugiyasu, T. Kishida, S. Haraguchi, N. Fujita, S. M. Park, Y. J. S. Yun, S. Shinkai, Org. Biomol. Chem. 2008, 6, 712.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) M. R. Mauk, R. C. Gamble, J. D. Baldeschwieler, Proc. Natl. Acad. Sci. USA 1980, 77, 4430.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) Y. Duan, S. B. Zhang, B. Wang, B. L. Yang, D. F. Zhi, Expert Opin. Drug Deliv. 2009, 6, 1351.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) S. Bhattacharya, A. Bajaj, Chem. Commun. 2009, 31, 4632.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) P. Palffy-Muhoray, Nature 1998, 391, 745.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtleqt78%3D&md5=d454d2c4e2a7e63a890990bd8ea95c9cCAS |
      (b) N. Tamaoki, A. V. Purfenov, A. Masaki, H. Matsuda, Adv. Mater. 1997, 9, 1102.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. Bunning, Adv. Mater. 2007, 19, 3244.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht12jt7jP&md5=1f0908cff2601c584fb717bca31e0c95CAS |
      (b) N. Mizoshita, Y. Suzuki, K. Hanabsa, T. Kato, Adv. Mater. 2005, 17, 692.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, B. L. Feringa, Nature 2006, 440, 163.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitFGit7w%3D&md5=53629bdb84b24795059b83473f324873CAS | 16525460PubMed |
      (b) M. A. Garcia-Garibay, Nat. Mater. 2008, 7, 431.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. Eelkema, M. M. Pollard, N. Katsonis, J. Vicario, D. J. Broer, B. L. Feringa, J. Am. Chem. Soc. 2006, 128, 14397.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  S. J. Woltman, G. D. Jay, G. P. Crawford, Nat. Mater. 2007, 6, 929.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOmtLrI&md5=61ffe8b64f176971ab4e88e5fac26250CAS | 18026108PubMed |

[11]  Y. Han, K. Pacheco, C. W. M. Bastiaansen, D. J. Broer, R. P. Sijbesma, J. Am. Chem. Soc. 2010, 132, 2961.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFGqtLs%3D&md5=9908bfec756b2c5afc63c3e320c6db9cCAS | 20148584PubMed |

[12]  (a) S. Ghosh, S. Verma, Chem. Eur. J. 2008, 14, 1415.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFaltbc%3D&md5=7c9f538000e81df08068ac8ebd33d7eeCAS |
      (b) N. Gour, S. Verma, Soft Matter 2009, 5, 1789.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) K. B. Joshi, S. Verma, Angew. Chem. Int. Ed. 2008, 47, 2860.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltVylu7o%3D&md5=f6e6e98a705e803afa17259c437d3917CAS |
      (b) K. B. Joshi, K. Vijaya Krishna, S. Verma, J. Org. Chem. 2010, 75, 4280.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) Q. Meng, Z. Li, G. Li, X. Zhang, Y. An, X. X. Zhu, Pure Appl. Chem. 2007, 79, 1575.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSms7jL&md5=9735d616de42b00e73608e8ee6a88b45CAS |
      (b) N. J. Lynch, P. K. Kilpatrick, R. G. Carbonell, Biotechnol. Bioeng. 1996, 50, 151.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) J. Yan, R. Bittman, J. Lipid Res. 1990, 31, 160.
         | 1:CAS:528:DyaK3cXktVKltbg%3D&md5=150014b67472b26f84021ee23fd9a3c7CAS | 2313200PubMed |
      (b) A. Zampella, R. D’Orsi, V. Sepe, S. De Marino, N. Borbone, A. Valentin, C. Debitus, M. V. D’Auria, Eur. J. Org. Chem. 2005, 4359.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Boonyarattanakalin, S. E. Martin, S. A. Dykstra, B. R. Peterson, J. Am. Chem. Soc. 2004, 126, 16379.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  C. Booth, R. J. Bushby, Y. Cheng, S. D. Evans, Q. Liu, H. Zhang, Tetrahedron 2001, 57, 9859.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotlWqt74%3D&md5=35e5c608db20d6afe3a34219f409e9b2CAS |

[17]  W. Pisula, M. Kastler, D. Wasserfallen, T. Pakula, K. Müllen, J. Am. Chem. Soc. 2004, 126, 8074.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksFeltro%3D&md5=7a04293cdc16aa0489a2f68e2b9c04faCAS | 15225022PubMed |

[18]  (a) S. B. Murray, A. C. Neville, Int. J. Biol. Macromol. 1998, 22, 137.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitVKrs7s%3D&md5=0ec9602716290140418ad1b2b771b47fCAS | 9585890PubMed |
      (b) S. B. Murray, A. C. Neville, Int. J. Biol. Macromol. 1997, 20, 123.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  R. L. Rill, Proc. Natl. Acad. Sci. USA 1986, 83, 342.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XmsVCkug%3D%3D&md5=ccc8944f43bafb3c20151a148b9e81ffCAS |

[20]  (a) M. R. H. Krebs, C. E. MacPhee, A. F. Miller, I. E. Dunlop, C. M. Dobson, A. M. Donald, Proc. Natl. Acad. Sci. USA 2004, 101, 14420.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVertbs%3D&md5=3b3bf4145b27353f9446155b263c79d3CAS |
      (b) S. Kobayashi, L. J. Hobson, J. Sakamoto, S. Kimura, J. Sugiyama, T. Itoh, T. Itoh, Biomacromolecules 2000, 1, 168.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  (a) Y. Pazy, T. Kulik, E. A. Bayer, M. Wilchek, O. Livnah, J. Biol. Chem. 2002, 277, 30892.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsFyqurc%3D&md5=61a0b8ece43c9cc83de191b23ac4efbfCAS | 12055191PubMed |
      (b) N. M. Green, Methods Enzymol. 1990, 184, 51.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) O. Livnah, E. A. Bayer, M. Wilchek, J. L. Sussman, FEBS Lett. 1993, 328, 165.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) O. Livnah, E. A. Bayer, M. Wilchek, J. L. Sussmann, Proc. Natl. Acad. Sci. USA 1993, 90, 5076.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  (a) P. C. Weber, D. H. Ohlendorf, J. J. Wendoloski, F. R. Salemme, Science 1989, 243, 85.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtFSgtb8%3D&md5=3dbb3f189904455daec4f4bb25c98490CAS | 2911722PubMed |
      (b) W. Shenton, S. A. Davis, S. Mann, Adv. Mater. 1999, 11, 449.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Chiruvolu, S. Walker, J. Israelachvili, F. J. Schmitt, D. Lenkband, J. A. Zasadzinski, Science 1994, 264, 1753.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. Connolly, S. Cobbe, D. Fitzmaurice, J. Phys. Chem. B 2001, 105, 2222.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) P. J. Costanzo, T. E. Patten, T. A. P. Seery, Chem. Mater. 2004, 16, 1775.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) P. J. Costanzo, E. Liang, T. E. Patten, S. D. Collins, R. L. Smith, Lab Chip 2005, 5, 606.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) P. J. Costanzo, T. E. Patten, T. A. P. Seery, Langmuir 2006, 22, 2788.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  (a) N. M. Green, Adv. Protein Chem. 1975, 29, 85.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXksleltrg%3D&md5=bb03fb11488a1630ceb2e89c79eb8bdbCAS | 237414PubMed |
      (b) R. Gref, P. Couvreur, G. Barratt, E. Mysiakine, Biomaterials 2003, 24, 4529.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. Berneis, M. L. Belle, P. J. Blanche, R. M. Krauss, J. Lipid Res. 2002, 43, 1155.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) H. Biederman, F. Carney, P. Chabrecek, J. Vogt, R. Houriet, H. Hofmann, Y. Chevolot, N. Xanthopoulos, H. J. Mathieu, Eur. Cell. Mater. 2001, 2, 60.
      (e) X. Mao, J. Jiang, J. Chen, Y. Huang, G. Shen, R. Yu, Anal. Chim. Acta 2006, 557, 159.
         | Crossref | GoogleScholarGoogle Scholar |