The Distal Effect of N-Electron-withdrawing Groups on the Stability of Peptide Carbon Radicals †
Junming Ho A , Michelle L. Coote A B and Christopher J. Easton A BA ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.
B Corresponding authors. Email: mcoote@rsc.anu.edu.au; easton@rsc.anu.edu.au
Australian Journal of Chemistry 64(4) 403-408 https://doi.org/10.1071/CH11003
Submitted: 4 January 2011 Accepted: 10 February 2011 Published: 18 April 2011
Abstract
The effect of electron-withdrawing substituents, hydrogen bonding and protonation at amide nitrogen on the stability of radicals formed by loss of either a distal C–H adjacent to the amide carbonyl or one proximal to the amide nitrogen for a series of acetamides and diketopiperazines has been studied via high-level ab initio methods. These studies show that the effect is to destabilize the radicals formed by abstraction of the proximal hydrogens, typically by 10–20 kJ mol–1, and stabilize the distal radicals typically by 5–10 kJ mol–1, but only if the distal radicals are polarized by another dative substituent. The different radical stabilities are not directly mirrored in calculated activation energies or experimental rates of radical formation in bromination reactions, because there is significant charge development in these reaction transition states.
References
[1] A. Rios, J. Crugeiras, T. L. Amyes, J. P. Richard, J. Am. Chem. Soc. 2001, 123, 7949.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlt1Oktbo%3D&md5=d33ae04f850daf8044e83a679e9d827eCAS | 11493086PubMed |
[2] A. Rios, T. L. Amyes, J. P. Richard, J. Am. Chem. Soc. 2000, 122, 9373.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtlOht7w%3D&md5=dfb2060b9570be20fe4722d33f1c06fcCAS |
[3] A. Rios, J. P. Richard, J. Am. Chem. Soc. 1997, 119, 8375.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtVeisbo%3D&md5=e85745edc54649d09595078dcb9e53b5CAS |
[4] G. Williams, E. P. Maziarz, T. L. Amyes, T. D. Wood, J. P. Richard, Biochemistry 2003, 42, 8354.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks12nu7w%3D&md5=d935a84b335df1d16c12c1612f2ddc27CAS | 12846584PubMed |
[5] A. Rios, J. P. Richard, T. L. Amyes, J. Am. Chem. Soc. 2002, 124, 8251.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xks1arurg%3D&md5=3fd2a5cd5588923292b752b0d24309a0CAS | 12105903PubMed |
[6] J. Ho, C. J. Easton, M. L. Coote, J. Am. Chem. Soc. 2010, 132, 5515.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvVaqtr0%3D&md5=569a766ada971ef45c9e7f8361e59016CAS | 20337444PubMed |
[7] P. R. Rablen, K. H. Bentrup, J. Am. Chem. Soc. 2003, 125, 2142.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1Wgug%3D%3D&md5=58c63a7229cb256bbe1b3f12cff2859dCAS | 12590542PubMed |
[8] A. K. Croft, C. J. Easton, K. Kociuba, L. Radom, Tetrahedron Asymmetry 2003, 14, 2919.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvFGjt74%3D&md5=0d582f8fbbe003f80d90aada3a3197dfCAS |
[9] C. L. L. Chai, D. B. Hay, A. R. King, Aust. J. Chem. 1996, 49, 605.
| 1:CAS:528:DyaK28Xkslajs74%3D&md5=0a002f8decef4cd191e306e3cd556f41CAS |
[10] T. W. Badran, C. L. L. Chai, C. J. Easton, J. B. Harper, D. M. Page, Aust. J. Chem. 1995, 48, 1379.
| Crossref | GoogleScholarGoogle Scholar |
[11] M. S. Taylor, S. A. Ivanic, G. P. F. Wood, C. J. Easton, G. B. Bacskay, L. Radom, J. Phys. Chem. A 2009, 113, 11817.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVWmtL4%3D&md5=1ec7ce62bab66188334e9ad86cae998aCAS | 19591497PubMed |
[12] G. P. F. Wood, D. Moran, R. Jacob, L. Radom, J. Phys. Chem. A 2005, 109, 6318.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlyktb0%3D&md5=94d7a5131201606ddeef42ff8eeb9a60CAS | 16833974PubMed |
[13] M. L. Coote, C. Y. Lin, H. Zipse, in Carbon-Centered Free Radicals and Radical Cations: Structure, Reactivity, and Dynamics 2010, pp. 83–104 (Ed. M. D. E. Forbes) (John Wiley & Sons, Inc.: Hoboken, NJ).
[14] B. J. W. Barratt, C. J. Easton, D. J. Henry, I. H. W. Li, L. Radom, J. S. Simpson, J. Am. Chem. Soc. 2004, 126, 13306.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsleisro%3D&md5=3074956c3907ed46831c488c1e966af9CAS | 15479085PubMed |
[15] A. K. Croft, C. J. Easton, L. Radom, J. Am. Chem. Soc. 2003, 125, 4119.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvF2lsbg%3D&md5=bc2fcba9bcb4e3df4ab3e274905cf73bCAS | 12670233PubMed |
[16] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision E.01 2004 (Gaussian, Inc.: Wallingford, CT).
[17] MOLPRO version 2009.1 is a package of ab initio programs written by H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schütz, P. Celani, T. Korona, A. Mitrushenkov, G. Rauhut, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, G. Hetzer, T. Hrenar, G. Knizia, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, U. Schumann, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, A. Wolf, see http://www.molpro.net.
[18] D. J. Henry, M. B. Sullivan, L. Radom, J. Chem. Phys. 2003, 118, 4849.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1ensL0%3D&md5=692be8635c7419e387ddcada36767f62CAS |
[19] M. L. Coote, C. Y. Lin, A. L. J. Beckwith, A. A. Zavitsas, Phys. Chem. Chem. Phys. 2010, 12, 9597.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVant7%2FN&md5=41add2ad37bdef9a1a0df922ae1af48fCAS | 20556274PubMed |
[20] A. P. Scott, L. Radom, J. Phys. Chem. 1996, 100, 16502.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xls12mu78%3D&md5=10e6b894090a25ecb5da05b3530a75dfCAS |
[21] M. L. Coote, J. Phys. Chem. A 2004, 108, 3865.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisl2ju7Y%3D&md5=1c654f85678fb66071283516659d6b59CAS |
[22] C. L. L. Chai, J. A. Elix, P. B. Huleatt, Tetrahedron 2005, 61, 8722.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVyguro%3D&md5=18b2f3d0e7baf7cb15467b3b12ef1631CAS |