Molecular Simulations to Rationalize Humanized Ab2/3H6 Activity
Anita de Ruiter A , Alexander Mader B , Renate Kunert B and Chris Oostenbrink A CA Institute for Molecular Modeling and Simulation, BOKU–University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
B Department of Biotechnology, Institute for Applied Microbiology, BOKU–University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria.
C Corresponding author. Email: chris.oostenbrink@boku.ac.at
Australian Journal of Chemistry 64(7) 900-909 https://doi.org/10.1071/CH10467
Submitted: 20 December 2010 Accepted: 17 February 2011 Published: 19 July 2011
Abstract
The murine anti-idiotypic antibody 3H6 (Ab2/3H6) is directed against the human 2F5 antibody, which is capable of neutralizing HIV-1. Recently, four humanized Ab2/3H6 models have been developed in order to reduce the risk of human anti-mouse antibody (HAMA) responses in case of administration to humans. In this study, molecular dynamics simulations were performed on these models as well as on the murine Ab2/3H6 in solution and bound to 2F5, in order to rationalize the differences in binding affinities of the models towards 2F5. Analysis of these simulations suggested that the orientation and dynamics of the residues TYR54 and TYR103 of the heavy chain of Ab2/3H6 play an important role in these differences. Subsequently, the contribution of these residues to the binding affinity was quantified by applying free energy calculations.
References
[1] S. A. Gallo, C. M. Finnegan, M. Viard, Y. Raviv, A. Dimitrov, S. S. Rawat, A. Puri, S. Durell, R. Blumenthal, Biochim. Biophys. Acta 2003, 1614, 36.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsVaisrk%3D&md5=b9090a1518f14e19e7fe4ce4df905d8eCAS |
[2] A. S. Dimitrov, S. S. Rawat, S. Jiang, R. Blumenthal, Biochemistry 2003, 42, 14150.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVOitbc%3D&md5=7b965cca39b3405b3aab57ad2587ef25CAS |
[3] D. R. Burton, R. C. Desrosiers, R. W. Doms, W. C. Koff, P. D. Kwong, J. P. Moore, G. J. Nabel, J. Sodroski, I. A. Wilson, R. T. Wyatt, Nat. Immunol. 2004, 5, 233.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFeit78%3D&md5=25f81bb62579bd447f2010e28dc64021CAS |
[4] R. Wyatt, J. Sodroski, Science 1998, 280, 1884.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvF2isrw%3D&md5=8aede3c4f15e5062665c412c1d647405CAS |
[5] J. P. Moore, Q. J. Sattentau, R. Wyatt, J. Sodroski, J. Virol. 1994, 68, 469.
| 1:CAS:528:DyaK2cXnsFentw%3D%3D&md5=9e5b7b5d608ff58933f3afeae91f3bb2CAS |
[6] J. Liu, A. Bartesaghi, M. J. Borgnia, G. Sapiro, S. Subramaniam, Nature 2008, 455, 109.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVKrsb3I&md5=ac3b2d9490333bb9cb050ce9ba9b5a94CAS |
[7] M. B. Zwick, A. F. Labrijn, M. Wang, C. Spenlehauer, E. O. Saphire, J. M. Binley, J. P. Moore, G. Stiegler, H. Katinger, D. R. Burton, P. W. H. I. Parren, J. Virol. 2001, 75, 10892.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvVelt7w%3D&md5=80d8e4b5339f6756489a70e8f37101c4CAS |
[8] R. Wyatt, P. D. Kwong, E. Desjardins, R. W. Sweet, J. Robinson, W. A. Hendrickson, J. G. Sodroski, Nature 1998, 393, 705.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktVyqurs%3D&md5=a51418d9d66a789f963824db77b53d86CAS |
[9] M. B. Zwick, R. Jensen, S. Church, M. Wang, G. Stiegler, R. Kunert, H. Katinger, D. R. Burton, J. Virol. 2005, 79, 1252.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlt12mtQ%3D%3D&md5=1e0f2924cc57ea8a85dda28b9f984882CAS |
[10] H. Yu, D. Tudor, A. Alfsen, B. Labrosse, F. Clavel, M. Bomsel, Retrovirology 2008, 5, 93.
| Crossref | GoogleScholarGoogle Scholar |
[11] E. O. Saphire, P. W. H. I. Parren, R. Pantophlet, M. B. Zwick, G. M. Morris, P. M. Rudd, R. A. Dwek, R. L. Stanfield, D. R. Burton, I. A. Wilson, Science 2001, 293, 1155.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtVWqur8%3D&md5=99a3c592b318efeac9be49946f9290b8CAS |
[12] J. S. Gach, P. G. Furtmüller, H. Quendler, P. Messner, R. Wagner, H. Katinger, R. Kunert, J. Biol. Chem. 2010, 285, 1122.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvFSr&md5=cec657994f0af1e23c0e134aae6b05d2CAS |
[13] Y. Li, S. A. Migueles, B. Welcher, K. Svehla, A. Phogat, M. K. Louder, X. Wu, G. M. Shaw, M. Connors, R. T. Wyatt, J. R. Mascola, http://www.nature.com/nm/journal/v13/n9/full/nm1624.html-a1#a1, Nat. Med. 2007, 13, 1032.
[14] D. Corti, J. P. M. Langedijk, A. Hinz, M. S. Seaman, F. Vanzetta, B. M. Fernandez-Rodriguez, C. Silacci, D. Pinna, D. Jarrossay, S. Balla-Jhagjhoorsingh, B. Willems, M. J. Zekveld, H. Dreja, E. O’Sullivan, C. Pade, C. Orkin, S. A. Jeffs, D. C. Montefiori, D. Davis, W. Weissenhorn, Á. McKnight, J. L. Heeney, F. Sallusto, Q. J. Sattentau, R. A. Weiss, A. Lanzavecchia, http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0008805-aff1#aff1, PLoS ONE 2010, 5, e8805.
[15] A. Trkola, A. B. Pomales, H. Yuan, B. Korber, P. J. Maddon, G. P. Allaway, H. Katinger, C. F. Barbas, D. R. Burton, D. D. Ho, J. Virol. 1995, 69, 6609.
| 1:CAS:528:DyaK2MXoslWksbc%3D&md5=54c6d0bfa0a66e4243a5a566d3ddfa96CAS |
[16] M. Purtscher, A. Trkola, G. Gruber, A. Buchacher, R. Predl, F. Steindl, C. Tauer, R. Berger, N. Barrett, A. Jungbauer, H. Katinger, AIDS Res. Hum. Retroviruses 1994, 10, 1651.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjs12ltrc%3D&md5=fece50a7bf33bdc947cae343971fe189CAS |
[17] H. Stoiber, I. Frank, M. Spruth, M. Schwendinger, B. Mullauer, J. M. Windisch, R. Schneider, H. Katinger, I. Ando, M. P. Dierich, Mol. Immunol. 1997, 34, 855.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXovVGgtA%3D%3D&md5=6953dc1c08d421732ebb921969029c1bCAS |
[18] Z.-Y. J. Sun, K. J. Oh, M. Kim, J. Yu, V. Brusic, L. Song, Z. Qiao, J.-H. Wang, G. Wagner, E. L. Reinherz, Immunity 2008, 28, 52.
| Crossref | GoogleScholarGoogle Scholar |
[19] L. Song, Z.-Y. J. Sun, K. E. Coleman, M. B. Zwick, J. S. Gach, J.-H. Wang, E. L. Reinherz, G. Wagner, M. Kim, Proc. Natl. Acad. Sci. USA 2009, 106, 9057.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntlymtb8%3D&md5=360ddc3ce21e8f7791226cfc9cfe32ccCAS |
[20] N. K. Jerne, J. Roland, P. A. Cazenave, EMBO J. 1982, 1, 243.
| 1:STN:280:DyaL2c7ot1Cluw%3D%3D&md5=6ad6250bb650916e25da648294f71268CAS |
[21] R. E. Kunert, R. Weik, B. Ferko, G. Stiegler, H. Katinger, AIDS 2002, 16, 667.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVyhs78%3D&md5=86119ff08bada86bae4429c2a1e7225bCAS |
[22] C. Sgro, Toxicology 1995, 105, 23.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsFSisLs%3D&md5=80da06e139b9d5154d266cbdf775b013CAS |
[23] A. Mader, R. Kunert, Protein Eng. Des. Sel. 2010, 23, 947.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVejsb%2FN&md5=c84ad17ab9e5cf3421a302acb80bf058CAS |
[24] N. Guex, M. C. Peitsch, Electrophoresis 1997, 18, 2714.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvFaks70%3D&md5=1e94dfade176cb772119fe9a32ad3cd1CAS |
[25] B. Lee, F. M. Richards, J. Mol. Biol. 1971, 55, 379.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXht1Shtrk%3D&md5=7cd9ac81c23499efb5f040b36df26256CAS |
[26] S. Bryson, J.-P. Julien, D. E. Isenman, R. Kunert, H. Katinger, E. F. Pai, J. Mol. Biol. 2008, 382, 910.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWlt7fE&md5=691feb27b1027bbc638bf8b730867e47CAS |
[27] M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids 1987 (Oxford University Press: Oxford).
[28] J. S. Gach, H. Quendler, S. Strobach, H. Katinger, R. Kunert, Mol. Immunol. 2008, 45, 1027.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1GhsrnL&md5=6215dc33271727cbe00808e29a53ced8CAS |
[29] M. Christen, P. H. Hünenberger, D. Bakowies, R. Baron, R. Bürgi, D. P. Geerke, T. N. Heinz, M. A. Kastenholz, V. Kräutler, C. Oostenbrink, C. Peter, D. Trzesniak, W. F. van Gunsteren, J. Comput. Chem. 2005, 26, 1719.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1SlsbbP&md5=bf7529f06e693b03327db5aa386ea013CAS |
[30] C. Oostenbrink, A. Villa, A. E. Mark, W. F. Van Gunsteren, J. Comput. Chem. 2004, 25, 1656.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvVOhtr4%3D&md5=31605f51282fcb85ebe923db4dd6035bCAS |
[31] H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, J. Hermans, Interaction Models for Water in Relation to Protein Hydration, in Intermolecular Forces 1981, pp. 331–342 (Reidel: Dordrecht, The Netherlands).
[32] H. Bekker, J. P. Van Den Berg, T. A. Wassenaar, J. Comput. Chem. 2004, 25, 1037.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFKktb4%3D&md5=76a236878b8ca80f7ca8844bb42be8e0CAS |
[33] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, J. R. Haak, J. Chem. Phys. 1984, 81, 3684.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtlGksbY%3D&md5=5d41bc859847b37e74081b2e10ed1721CAS |
[34] J.-P. Ryckaert, G. Ciccotti, H. J. C. Berendsen, J. Comput. Phys. 1977, 23, 327.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXktVGhsL4%3D&md5=6211f0fdbb78792d60ddbe6b9b7e9f1aCAS |
[35] I. G. Tironi, R. Sperb, P. E. Smith, W. F. van Gunsteren, J. Chem. Phys. 1995, 102, 5451.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkslOmsLg%3D&md5=ec9a3f4f37aa623399ccb90191e4efecCAS |
[36] T. N. Heinz, W. F. van Gunsteren, P. H. Hünenberger, J. Chem. Phys. 2001, 115, 1125.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFCmurg%3D&md5=c3f7c17d025dd857823b634411ee2957CAS |
[37] J. G. Kirkwood, J. Chem. Phys. 1935, 3, 300.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA2MXjt1OrsA%3D%3D&md5=810ec334a23ed01e0f420b57bfdc0aa0CAS |
[38] B. L. Tembre, J. A. Mc Cammon, Comput. Chem. 1984, 8, 281.
| Crossref | GoogleScholarGoogle Scholar |
[39] T. C. Beutler, A. E. Mark, R. C. van Schaik, P. R. Gerber, W. F. van Gunsteren, Chem. Phys. Lett. 1994, 222, 529.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXksVCis7w%3D&md5=68f7cb7c7ec4d62898fdefc609c18991CAS |