Synthesis of an Isotopically-labelled Antarctic Fish Antifreeze Glycoprotein Probe
Joanna M. Wojnar A , Clive W. Evans B , Arthur L. DeVries C and Margaret A. Brimble A DA Department of Chemistry, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.
B School of Biological Sciences, The University of Auckland, 3a Symonds Street, Auckland 1142, New Zealand.
C Department of Animal Biology, University of Illinois at Urbana-Champaign, 524 Burrill Hall, 407 S Goodwin, Urbana, IL 61801, USA.
D Corresponding author. Email: m.brimble@auckland.ac.nz
Margaret Brimble graduated from the University of Auckland with an MSc (First Class Honours) in Chemistry in 1983. She was subsequently awarded a UK Commonwealth Scholarship to undertake her Ph.D. studies at Southampton University, UK. In 1986, she was appointed as a lecturer at Massey University. After a Visiting Professorship at the University of California, Berkeley, she moved to the University of Sydney in 1995 as a Reader in Organic Chemistry. She returned to New Zealand in 1999 to take up the Chair of Organic Chemistry at the University of Auckland. She established New Zealandâs first BSc (Hons) degree in medicinal chemistry and has been Director of the Medicinal Chemistry Programme since 2002. Professor Brimbleâs research focusses on the synthesis of novel bioactive natural products, peptides, and peptidomimetics as potential therapeutic agents. She developed the drug candidate NNZ2566 for Neuren Pharmaceuticals that is in phase 2b clinical trials for traumatic brain injury in partnership with the US Army Walter Reed Institute. She is currently the Chairperson of the Rutherford Foundation, Principal Investigator of the Maurice Wilkins Centre for Molecular Biodiscovery Titular Member of the International Union of Pure and Applied Chemistry (IUPAC) Organic and Biomolecular Chemistry Division and a member of international advisory boards for several international chemistry journals. She is the past convenor of the Marsden Fund – Chemistry, Physics and Biochemistry Panel, a member of the Marsden Fund Council and the past President of the International Society of Heterocyclic Chemistry. She has published over 250 papers and is a member of the Editorial Board for Organic and Biomolecular Chemistry and a member of the International Advisory Board for Synthesis, Synlett, Natural Product Reports, and several other journals. In 2004, Professor Brimble was conferred the Queenâs honour Member New Zealand Order of Merit (MNZM). She was named the 2007 L'Oréal-UNESCO Women in Science Laureate for Asia-Pacific in Materials Science and the recipient of the 2010 Natural Product Chemistry Award from the Royal Society of Chemistry. |
Australian Journal of Chemistry 64(6) 723-731 https://doi.org/10.1071/CH10464
Submitted: 20 December 2010 Accepted: 28 January 2011 Published: 27 June 2011
Abstract
Antifreeze glycoproteins (AFGPs) are glycosylated polypeptides produced by Antarctic and Arctic fishes, which allow them to survive in seawater at sub-zero temperatures. An investigation into the postulated enteric uptake of AFGP synthesized in the exocrine pancreas of Antarctic fishes required a custom-prepared AFGP probe that incorporated seven isotopically-labelled Ala residues for detection by mass spectrometry. The AFGPs are composed of a repetitive three amino acid unit (Ala-Ala-Thr), in which the threonine residue is glycosylated with the disaccharide β-d-Gal-(1→3)-α-d-GalNAc. The synthesis of isotopically-labelled AFGP8 (1), as well as the optimized synthesis of the protected glycosylated amino acid building block 2, is reported.
References
[1] (a) A. L. DeVries, Science 1971, 172, 1152.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXktlWqsbw%3D&md5=95999471f571ba7a36fa8a1756e30d09CAS | 5574522PubMed |
(b) R. N. Ben, ChemBioChem 2001, 2, 161.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. M. Harding, P. I. Anderberg, A. D. J. Haymet, Eur. J. Biochem. 2003, 270, 1381.
| Crossref | GoogleScholarGoogle Scholar |
[2] A. L. DeVries, Annu. Rev. Physiol. 1983, 45, 245.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhsFyjtb0%3D&md5=da43e79037f535483d57413fb0e9d4aaCAS | 6342516PubMed |
[3] J. A. Raymond, A. L. DeVries, Proc. Natl. Acad. Sci. USA 1977, 74, 2589.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXks1Cgsbg%3D&md5=22ff0f54994b12c54e25aa371c9da241CAS |
[4] C.-H. C. Cheng, P. A. Cziko, C. W. Evans, Proc. Natl. Acad. Sci. USA 2006, 103, 10491.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsVShtb8%3D&md5=50f363ccd2fd2f4003604dadaee11a60CAS |
[5] C. W. Evans, V. Gubala, R. Nooney, D. E. Williams, M. A. Brimble, A. L. DeVries, Antarct. Sci. 2011, 23, 57.
| Crossref | GoogleScholarGoogle Scholar |
[6] R. Peltier, M. A. Brimble, J. M. Wojnar, D. E. Williams, C. W. Evans, A. L. DeVries, Chem. Sci. 2010, 1, 538.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1OgsbvF&md5=0a064179d723f381758abd2e0f30ae15CAS |
[7] M. Cudic, G. D. Burstein, Methods Mol. Biol. 2008, 494, 187.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGlu7nF&md5=4f3ebb84a1c97c37cf4f63ff4a8cb590CAS | 18726575PubMed |
[8] (a) Y. Tachibana, N. Matsubara, F. Nakajima, T. Tsuda, S. Tsuda, K. Monde, S.-I. Nishimura, Tetrahedron 2002, 58, 10213.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpt1Gitbw%3D&md5=3079da850c9ada9b3b7c2b7f26032649CAS |
(b) T. Tsuda, S.-I. Nishimura, Chem. Commun. 1996, 2779.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Tachibana, K. Monde, S.-I. Nishimura, Macromolecules 2004, 37, 6771.
| Crossref | GoogleScholarGoogle Scholar |
[9] P.-H. Tseng, W.-T. Jiaang, M.-Y. Chang, S.-T. Chen, Chemistry 2001, 7, 585.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1SksLY%3D&md5=e381a89ff39333178486b8e8aca4fa33CAS | 11261655PubMed |
[10] (a) S. D. Kuduk, J. B. Schwarz, X.-T. Chen, P. W. Glunz, D. Sames, G. Ragupathi, P. O. Livingston, S. J. Danishefsky, J. Am. Chem. Soc. 1998, 120, 12474.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsVaqsLs%3D&md5=6b091c130f0312acb66a8bb2c03e4fefCAS |
(b) S. Dziadek, C. Brocke, H. Kunz, Chemistry 2004, 10, 4150.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. L. Wilkinson, L. R. Malins, C. K. Y. Chun, R. J. Payne, Chem. Commun. 2010, 46, 6249.
| Crossref | GoogleScholarGoogle Scholar |
[11] K. F. Geoghegan, D. T. Osuga, A. I. Ahmed, Y. Yeh, R. E. Feeney, J. Biol. Chem. 1980, 255, 663.
| 1:CAS:528:DyaL3cXhtVKis7s%3D&md5=7ac86db629036635766c5b926e6b8c9aCAS | 7356637PubMed |
[12] M. A. Brimble, R. Kowalczyk, P. W. R. Harris, P. R. Dunbar, V. J. Muir, Org. Biomol. Chem. 2008, 6, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVantbnO&md5=ae571c46ed0b7f2240ecd3edca8e3b1fCAS | 18075655PubMed |
[13] D. J. Lee, P. W. R. Harris, R. Kowalczyk, P. R. Dunbar, M. A. Brimble, Synthesis 2010, 763.
[14] (a) R. U. Lemieux, R. M. Ratcliffe, Can. J. Chem. 1979, 57, 1244.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXkvFWrtLk%3D&md5=0ce4e5b880c7da38c98d0204ccfd0f09CAS |
(b) O. Srinivas, B. Muktha, S. Radhika, T. N. Guru Row, N. Jayaraman, Carbohydr. Res. 2004, 339, 1447.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Liu, V. G. Young, S. Lohani, D. Live, G. Barany, Carbohydr. Res. 2005, 340, 1273.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) A. Vasella, C. Witzig, J. L. Chiara, M. Martin-Lomas, Helv. Chim. Acta 1991, 74, 2073.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtVKlt70%3D&md5=d591d677ad5a0ba77cb6d83790a06b87CAS |
(b) R.-B. Yan, F. Yang, Y. Wu, L.-H. Zhang, X.-S. Ye, Tetrahedron Lett. 2005, 46, 8993.
| Crossref | GoogleScholarGoogle Scholar |
[16] E. D. Goddard-Borger, R. V. Stick, Org. Lett. 2007, 9, 3797.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVeltro%3D&md5=52022b558890ac4b680141126a48692cCAS | 17713918PubMed |
[17] T. Rosen, I. M. Lico, D. T. W. Chu, J. Org. Chem. 1988, 53, 1580.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhsFShs7w%3D&md5=43c1faf6fad94606f01f7d38e54c6936CAS |
[18] K. A. Winans, D. S. King, V. R. Rao, C. R. Bertozzi, Biochemistry 1999, 38, 11700.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltFSktbs%3D&md5=81bd91ab4f3990ea2725846aa7848b31CAS | 10512626PubMed |
[19] V. R. Krishnamurthy, A. Dougherty, M. Kamat, X. Song, R. D. Cummings, E. L. Chaikof, Carbohydr. Res. 2010, 345, 1541.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVKmt78%3D&md5=b94b363d3d05fce282832db5c78fd631CAS | 20561607PubMed |
[20] C.-E. Yeom, S. Y. Lee, Y. J. Kim, B. M. Kim, Synlett 2005, 1527.
| 1:CAS:528:DC%2BD2MXlslersLk%3D&md5=e940b4540df716dec92c210937e84864CAS |
[21] (a) R. R. Schmidt, J. Michel, Angew. Chem. Int. Ed. Engl. 1980, 19, 731.
| Crossref | GoogleScholarGoogle Scholar |
(b) R. R. Schmidt, Angew. Chem. Int. Ed. Engl. 1986, 25, 212.
| Crossref | GoogleScholarGoogle Scholar |
[22] (a) A. T. Tran, S. Deydier, D. Bonnaffe, C. Le Narvor, Tetrahedron Lett. 2008, 49, 2163.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis1Cns7Y%3D&md5=f52290be5dee9af9d3cd219d901021e6CAS |
(b) P. Tiwari, A. K. Misra, Tetrahedron Lett. 2006, 47, 3573.
| Crossref | GoogleScholarGoogle Scholar |
[23] K. Bhaumik, P. D. Salgaonkar, K. G. Akamanchi, Aust. J. Chem. 2003, 56, 909.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsV2jtrw%3D&md5=eba7d81e87759e12445774d638b3b14cCAS |
[24] M. A. Brimble, R. Kowalczyk, P. W. R. Harris, R. Dunbar, V. J. Muir, Biopolymers 2007, 88, 539.
[25] A. R. Mitchell, S. B. H. Kent, M. Engelhard, R. B. Merrifield, J. Org. Chem. 1978, 43, 2845.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXlsVOiu7g%3D&md5=76f1af1c921b717a56dbd07d8f449bb1CAS |
[26] R. Kowalczyk, P. W. R. Harris, R. P. Dunbar, M. A. Brimble, Synthesis 2009, 2210.
| 1:CAS:528:DC%2BD1MXps1egs7w%3D&md5=8915614e5a32f6a06f12e62c536bfa86CAS |
[27] W. L. F. Armarego, C. L. L. Chai, Purification of Laboratory Chemicals, 5th edn 2003 (Elsevier: Burlington, MA).
[28] (a) R. Krishnamoorthy, L. D. Vazquez-Serrano, J. A. Turk, J. A. Kowalski, A. G. Benson, N. T. Breaux, M. A. Lipton, J. Am. Chem. Soc. 2006, 128, 15392.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOmtLnF&md5=bd8cbfa29a7d93d28dc8a43821b6a6c5CAS | 17132003PubMed |
(b) S. Ficht, R. J. Payne, R. T. Guy, C.-H. Wong, Chemistry 2008, 14, 3620.
| Crossref | GoogleScholarGoogle Scholar |
[29] (a) R. J. Payne, S. Ficht, S. Tang, A. Brik, Y.-Y. Yang, D. A. Case, C.-H. Wong, J. Am. Chem. Soc. 2007, 129, 13527.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKhtbvE&md5=cd836e5ca19c77836fc3fd2c98e38b0bCAS | 17935327PubMed |
(b) T. Vuljanic, K.-E. Bergquist, H. Clausen, S. Roy, J. Kihlberg, Tetrahedron 1996, 52, 7983.
| Crossref | GoogleScholarGoogle Scholar |
[30] (a) M. Filice, R. Fernandez-Lafuente, M. Terreni, J. M. Guisan, J. M. Palomo, J. Mol. Catal., B Enzym. 2007, 49, 12.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ahur3K&md5=866a4896ccc7a9e03a01588238eaf58eCAS |
(b) A. K. Misra, G. Agnihotri, Carbohydr. Res. 2004, 339, 885.
| Crossref | GoogleScholarGoogle Scholar |
[31] P.-H. Amvam-Zollo, P. Sinay, Carbohydr. Res. 1986, 150, 199.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXltVGltQ%3D%3D&md5=b897dce0c6e060037ca11317a81ed85dCAS | 3756957PubMed |