A Series of 2D and 3D Novel Lanthanide Complexes Constructed from Squarate C4O42–: Syntheses, Structures, Magnetic Properties, and Near-infrared Emission Properties
Li Wang A , Wen Gu A B C , Xiu-Jun Deng A , Ling-Fei Zeng A , Sheng-Yun Liao A , Ming Zhang A , Lin-Yan Yang A and Xin Liu A BA Department of Chemistry, Nankai University, Tianjin 300071, China.
B Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Tianjin 300071, China.
C Corresponding author. Email: guwen68@nankai.edu.cn
Australian Journal of Chemistry 64(10) 1373-1382 https://doi.org/10.1071/CH10459
Submitted: 15 December 2010 Accepted: 31 May 2011 Published: 23 August 2011
Abstract
The solvothermal combination of trivalent lanthanide metal precursors with a squarate ligand (H2C4O4, 3,4-dihydroxy-3-cyclobutene-1,2-dione) has afforded the preparation of a family of eight new coordination polymers, [Ln2(C4O4)3(H2O)4] (Ln = La–Nd, Ho) (1–5), [Ln2(C4O4)3(H2O)8] (Ln = Er, Dy) (6, 7), and Tb2(C4O4)2(C2O4)(H2O)4 (8). Structural analysis reveals that the squarate ligand displays versatile coordination modes to generate novel 2D and 3D frameworks. Three new coordination modes, a bidentate/monodentate μ3 and two bidentate/monodentate μ4 coordination modes, are first reported. In addition, the variable-temperature magnetic properties of the Pr, Nd, Ho, Dy, and Tb complexes, the solid-state near-infrared luminescence spectra of the Pr, Nd, Ho, and Er complexes, and their thermogravimetric analyses are discussed.
References
[1] (a) B. Yan, H. J. Zhang, S. B. Wang, J. Z. Ni, Mater. Res. Bull. 1998, 33, 1517.| Crossref | GoogleScholarGoogle Scholar |
(b) M. V. Lucky, S. Sivakumar, M. L. P. Reddy, A. K. Paul, S. Natarajan, Cryst. Growth Des. 2011, 11, 857.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. M. Fang, E. C. Sanudo, M. Hu, Q. Zhang, S. T. Ma, L. R. Jia, C. Wang, J. Y. Tang, M. Du, C. S. Liu, Cryst. Growth Des. 2011, 11, 811.
| Crossref | GoogleScholarGoogle Scholar |
(d) W. G. Lu, L. Jiang, T. B. Lu, Cryst. Growth. Des. 2010, 10, 4310.
| Crossref | GoogleScholarGoogle Scholar |
[2] A. Caneschi, A. Dei, D. Gatteschi, L. Sorace, K. Vostrikova, Angew. Chem. Int. Ed. 2000, 39, 246.
| Crossref | GoogleScholarGoogle Scholar |
[3] C. Yang, M. Fu, L. Y. Wang, J. P. Zhang, W. T. Wong, X. C. Ai, Y. F. Qiao, B. S. Zou, L. L. Gui, Angew. Chem. Int. Ed. 2004, 43, 5010.
| Crossref | GoogleScholarGoogle Scholar |
[4] O. Kahn, Molecular Magnetism 1993 (VCH: New York, NY).
[5] S. O. H. Gutschke, M. Molinier, A. K. Powell, P. W. Wood, Angew. Chem. Int. Ed. Engl. 1997, 36, 991.
| Crossref | GoogleScholarGoogle Scholar |
[6] C. Robl, A. Z. Weiss, Naturforsch 1986, 41B, 1341.
[7] S. Kawata, S. Kitagawa, H. Kumagai, T. Ishiyma, K. Honda, H. Tobita, K. Adachi, M. Katada, Chem. Mater. 1998, 10, 3902.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) C.-C. Wang, C.-T. Kuo, J. C. Yang, G. H. Lee, W.-J. Shih, H.-S. Sheu, Cryst. Growth Des. 2007, 7, 1476.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. Dan, C. N. R. Rao, Solid State Sci. 2003, 5, 615.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Kurmoo, H. Kumagai, K. W. Chapman, C. Kepert, J. Chem. Commun. 2005, 3012.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. C. Wang, C. H. Yang, G. H. Lee, H. L. Tsai, Eur. J. Inorg. Chem. 2005, 1334.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) S. C. Manna, A. Zangrando, J. Ribas, N. R. Chaudhuri, Inorg. Chim. Acta 2005, 358, 4497.
| Crossref | GoogleScholarGoogle Scholar |
(b) R. Vicente, J. Cano, E. Ruiz, S. S. Massoud, F. A. Mautner, Inorg. Chem. 2008, 47, 4648.
| Crossref | GoogleScholarGoogle Scholar |
[10] M. Habenschuss, B. C. Gerstein, J. Chem. Phys. 1974, 61, 852.
| Crossref | GoogleScholarGoogle Scholar |
[11] C. E. Xanthopoulos, M. P. Sigalas, G. A. Katsoulos, C. A. Tsipis, C. C. Hadjikostas, A. Terzis, M. Mentzafos, Inorg. Chem. 1993, 32, 3743.
| Crossref | GoogleScholarGoogle Scholar |
[12] T. J. Foley, B. S. Harrison, A. S. Knefely, K. A. Abboud, J. R. Reynolds, K. S. Schanze, J. M. Boncella, Inorg. Chem. 2003, 42, 5023.
| Crossref | GoogleScholarGoogle Scholar |
[13] C.-M. Wang, Y.-Y. Wu, C.-H. Hou, C.-C. Chen, K.-H. Lii, Inorg. Chem. 2009, 48, 1520.
[14] Y. Li, F. K. Zheng, X. Liu, W. Q. Zou, G. C. Guo, C. Z. Lu, J. S. Huang, Inorg. Chem. 2006, 45, 6313.
[15] C. Benelli, D. Gatteshi, Chem. Rev. 2002, 102, 2369.
| Crossref | GoogleScholarGoogle Scholar |
[16] J. P. Costes, J. M. Clemente-Juan, F. Dahan, F. Nicodème, M. Verelst, Angew. Chem. Int. Ed. 2002, 41, 323.
| Crossref | GoogleScholarGoogle Scholar |
[17] N. Ishikawa, M. Sugita, T. Okubo, N. Tanaka, T. Iino, Y. Kaizu, Inorg. Chem. 2003, 42, 2440.
| Crossref | GoogleScholarGoogle Scholar |
[18] H. L. Gao, B. Zhao, X. Q. Zhao, Y. Song, P. Cheng, D. Z. Liao, S. P. Yan, Inorg. Chem. 2008, 47, 11061.
[19] M. Fang, L. X. Chang, X. H. Liu, B. Zhao, Y. Zuo, Z. Chen, Cryst. Growth Des. 2009, 9, 4015.
[20] G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals 1968 (Wiley-Interscience: New York, NY).
[21] F. X. Zang, W. L. Li, Z. R. Hong, H. Z. Wei, M. T. Li, X. Y. Sun, C. S. Lee, Appl. Phys. Lett. 2004, 84, 5115.
| Crossref | GoogleScholarGoogle Scholar |
[22] B. Chen, Y. Yang, F. Zapata, G. Qian, Y. Luo, J. Zhang, E. B. Lobkovsky, Inorg. Chem. 2006, 45, 8882.
| Crossref | GoogleScholarGoogle Scholar |
[23] S. Comby, J.-C. G. Bu¨nzli, Handbook on the Physics and Chemistry of Rare Earth 2007, Vol. 37, Ch. 235 (Eds K. A. Gschneider, Jr., J.-C. G. Bu¨nzli, V. Pecharsky) (Elsevier: Amsterdam).
[24] (a) D. Min, S. W. Lee, Inorg. Chem. Commun. 2002, 5, 978.
| Crossref | GoogleScholarGoogle Scholar |
(b) H. S. Huh, S. W. Lee, Bull. Korean Chem. Soc. 2006, 27, 1839.
| Crossref | GoogleScholarGoogle Scholar |
(c) W. J. Evans, C. A. Seibel, J. W. Ziller, Inorg. Chem. 1998, 37, 770.
| Crossref | GoogleScholarGoogle Scholar |
[25] G. M. Sheldrick, SHELXS-97 1997, Program for X-ray Crystal Structure Solution, University of Go¨ttingen, Go¨ttingen, Germany.
[26] G. M. Sheldrick, SHELXL-97 1997, Program for X-ray Crystal Structure Refinement, University of Go¨ttingen, Go¨ttingen, Germany.