Metallo-oxidase Enzymes: Design of their Active Sites*
Zhiguang Xiao A B and Anthony G. Wedd A BA School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Vic. 3010, Australia.
B Corresponding authors. Email: z.xiao@unimelb.edu.au, agw@unimelb.edu.au
Zhiguang Xiao (left) is a Research Fellow and Anthony G. Wedd (right) is a Professorial Fellow in the Bio21 Molecular Science and Biotechnology Research Institute and School of Chemistry at the University of Melbourne, Australia. |
Australian Journal of Chemistry 64(3) 231-238 https://doi.org/10.1071/CH10428
Submitted: 25 November 2010 Accepted: 17 January 2011 Published: 11 March 2011
Abstract
Multi-copper oxidases are a large family of enzymes prevalent in all three domains of life. They couple the one-electron oxidation of substrate to the four-electron reduction of dioxygen to water and feature at least four Cu atoms, traditionally divided into three sites: T1, T2, and (binuclear) T3. The T1 site catalyzes substrate oxidation while a trinuclear cluster (comprising combined T2 and T3 centres) catalyzes the reduction of dioxygen. Substrate oxidation at the T1 Cu site occurs via an outer-sphere mechanism and consequently substrate specificities are determined primarily by the nature of a substrate docking/oxidation (SDO) site associated with the T1 Cu centre. Many of these enzymes ‘moonlight’, i.e. display broad specificities towards many different substrates and may have multiple cellular functions. A sub-set are robust catalysts for the oxidation of low-valent transition metal ions such as FeII, CuI, and MnII and are termed ‘metallo-oxidases’. They play essential roles in nutrient metal uptake and homeostasis, with the ferroxidase ceruloplasmin being a prominent member. Their SDO sites are tailored to facilitate specific binding and facile oxidation of these low-valent metal ions and this is the focus of this review.
References
[1] X. Shi, C. Stoj, A. Romeo, D. J. Kosman, Z. Zhu, J. Biol. Chem. 2003, 278, 50309.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpslSqtro%3D&md5=a07912a9bdff373e257729cc10dbbf6eCAS | 12954629PubMed |
[2] E. I. Solomon, U. M. Sundaram, T. E. Machonkin, Chem. Rev. 1996, 96, 2563.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmt1Gnu7k%3D&md5=ede38204a6efaa0905e019b2799c01ddCAS | 11848837PubMed |
[3] R. Stearman, D. S. Yuan, Y. Yamaguchi-Iwai, R. D. Klausner, A. Dancis, Science 1996, 271, 1552.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhslSjsLc%3D&md5=f3ce1bf3861d98228353160936425d43CAS | 8599111PubMed |
[4] A. B. Taylor, C. S. Stoj, L. Ziegler, D. J. Kosman, P. J. Hart, Proc. Natl. Acad. Sci. USA 2005, 102, 15459.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ShtrvL&md5=a75356562ea79dde77d44e66cb8105c9CAS |
[5] I. Zaitseva, V. Zaitsev, G. Card, K. Moshkov, B. Bax, A. Ralph, P. Lindley, J. Biol. Inorg. Chem. 1996, 1, 15.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisVShsrc%3D&md5=2c543f13b12e416ee1a9e3e51d82812dCAS |
[6] C. D. Vulpe, Y. M. Kuo, T. L. Murphy, L. Cowley, C. Askwith, N. Libina, J. Gitschier, G. J. Anderson, Nat. Genet. 1999, 21, 195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXpsVCktg%3D%3D&md5=42fc8a4e6502922ee427541415769010CAS | 9988272PubMed |
[7] R. S. Eisenstein, Nutr. Rev. 2000, 58, 22.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7mt1CqsQ%3D%3D&md5=3a69b52e68623958be7cebdc87a93e54CAS | 10697391PubMed |
[8] H. Chen, Z. K. Attieh, B. A. Syed, Y. M. Kuo, V. Stevens, B. K. Fuqua, H. S. Andersen, C. E. Naylor, R. W. Evans, L. Gambling, R. Danzeisen, M. Bacouri-Haidar, J. Usta, C. D. Vulpe, H. J. McArdle, J. Nutr. 2010, 140, 1728.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSnur%2FI&md5=bd3f95090b6ccecc724245b45b2501a8CAS | 20685892PubMed |
[9] C. Rensing, G. Grass, FEMS Microbiol. Rev. 2003, 27, 197.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVOlt7w%3D&md5=40a04ad543da60131e99acc02e2979a8CAS | 12829268PubMed |
[10] G. J. Dick, J. W. Torpey, T. J. Beveridge, B. M. Tebo, Appl. Environ. Microbiol. 2008, 74, 1527.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjt1aktbg%3D&md5=09b1fa03b016e5a2182536ebdc74e85cCAS | 18165363PubMed |
[11] T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, S. Yoshikawa, Science 1996, 272, 1136.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtF2gu7k%3D&md5=d5f7a10dff02c961f4f22ce39c70b788CAS | 8638158PubMed |
[12] K. Y. Djoko, Z. Xiao, A. G. Wedd, ChemBioChem 2008, 9, 1579.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXos1egu7s%3D&md5=7f111d0aa760efee051171cec1e7f0fdCAS | 18536063PubMed |
[13] E. I. Solomon, A. J. Augustine, J. Yoon, Dalton Trans. 2008, 3921.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovV2nt74%3D&md5=acfccd8b9f83434f138909cf765575d9CAS | 18648693PubMed |
[14] K. Kataoka, R. Sugiyama, S. Hirota, M. Inoue, K. Urata, Y. Minagawa, D. Seo, T. Sakurai, J. Biol. Chem. 2009, 284, 14405.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvV2ju7c%3D&md5=29a38d69c58497f61a430089cee49a1eCAS | 19297322PubMed |
[15] T. Bertrand, C. Jolivalt, P. Briozzo, E. Caminade, N. Joly, C. Madzak, C. Mougin, Biochemistry 2002, 41, 7325.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFOrtb0%3D&md5=8ab6144487f10e38280d2a728e9e389eCAS | 12044164PubMed |
[16] T. E. Machonkin, L. Quintanar, A. E. Palmer, R. Hassett, S. Severance, D. J. Kosman, E. I. Solomon, J. Am. Chem. Soc. 2001, 123, 5507.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsVGju70%3D&md5=a34f88934b88e4980600dbd2f6dbebd8CAS | 11389633PubMed |
[17] L. Quintanar, C. Stoj, A. B. Taylor, P. J. Hart, D. J. Kosman, E. I. Solomon, Acc. Chem. Res. 2007, 40, 445.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvFaltL0%3D&md5=ae96e40a0c97f45dfb6e24e9fd005f24CAS | 17425282PubMed |
[18] D. J. Kosman, J. Biol. Inorg. Chem. 2010, 15, 15.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVylsbjP&md5=332e378b756dbd9085eba3b06e990cb4CAS | 19816718PubMed |
[19] D. J. Kosman, Adv. Protein Chem. 2002, 60, 221.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsVyisb8%3D&md5=bf4481185559afb541a2698452ec9789CAS | 12418179PubMed |
[20] E. Y. Kwok, S. Severance, D. J. Kosman, Biochemistry 2006, 45, 6317.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVSnsLY%3D&md5=8632c2c6a6dadbea1ca25ceeb2805779CAS | 16700543PubMed |
[21] N. E. Hellman, J. D. Gitlin, Annu. Rev. Nutr. 2002, 22, 439.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtF2htb8%3D&md5=a85386f904969951d9dd090422bd24f7CAS | 12055353PubMed |
[22] T. A. Griffiths, A. G. Mauk, R. T. MacGillivray, Biochemistry 2005, 44, 14725.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWhu7rF&md5=d822b3b7da426a2550680f8b486357f1CAS | 16274220PubMed |
[23] G. J. Anderson, C. D. Vulpe, Cell. Mol. Life Sci. 2009, 66, 3241.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOhsrbI&md5=fbbf5b0f3f845455ae8e20078969c715CAS | 19484405PubMed |
[24] I. De Domenico, D. M. Ward, M. C. di Patti, S. Y. Jeong, S. David, G. Musci, J. Kaplan, EMBO J. 2007, 26, 2823.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1WntLc%3D&md5=a7209af6fb335aef203b67be6c68023bCAS | 17541408PubMed |
[25] J. A. Duce, A. Tsatsanis, M. A. Cater, S. A. James, E. Robb, K. Wikhe, S. L. Leong, K. Perez, T. Johanssen, M. A. Greenough, H. H. Cho, D. Galatis, R. D. Moir, C. L. Masters, C. McLean, R. E. Tanzi, R. Cappai, K. J. Barnham, G. D. Ciccotosto, J. T. Rogers, A. I. Bush, Cell 2010, 142, 857.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFyitb%2FJ&md5=e59e7121c3ce7a5f8fc1b3d338d58213CAS | 20817278PubMed |
[26] L. Quintanar, M. Gebhard, T. P. Wang, D. J. Kosman, E. I. Solomon, J. Am. Chem. Soc. 2004, 126, 6579.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs12is70%3D&md5=e09774aa97920c5a97a1435115f09017CAS | 15161286PubMed |
[27] C. S. Stoj, A. J. Augustine, L. Zeigler, E. I. Solomon, D. J. Kosman, Biochemistry 2006, 45, 12741.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVagsr7O&md5=edd326a505844b6f0e68966f15a66449CAS | 17042492PubMed |
[28] T. P. Wang, L. Quintanar, S. Severance, E. I. Solomon, D. J. Kosman, J. Biol. Inorg. Chem. 2003, 8, 611.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsVOns74%3D&md5=0bac725187a169589606dfe824678a51CAS | 12684851PubMed |
[29] M. C. di Patti, S. Pascarella, D. Catalucci, L. Calabrese, Protein Eng. 1999, 12, 895.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotFSrsbw%3D&md5=b957e6aacc85812b80645886d3532d02CAS | 10585494PubMed |
[30] P. F. Lindley, G. Card, I. Zaitseva, V. Zaitsev, B. Reinhammar, E. Selin-Lindgren, K. Yoshida, J. Biol. Inorg. Chem. 1997, 2, 454.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmt1yhtLg%3D&md5=26fd46c5e26674f1d7fc5edc0991c3b6CAS |
[31] T. E. Machonkin, H. H. Zhang, B. Hedman, K. O. Hodgson, E. I. Solomon, Biochemistry 1998, 37, 9570.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjslWku7k%3D&md5=816429a4ecd5f241fb9479c3c0ea0ca0CAS | 9649340PubMed |
[32] T. E. Machonkin, E. I. Solomon, J. Am. Chem. Soc. 2000, 122, 12547.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotl2ntrw%3D&md5=13fc75575f931594413b3069797016a7CAS |
[33] M. A. Brown, L. M. Stenberg, A. G. Mauk, FEBS Lett. 2002, 520, 8.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFOgsbY%3D&md5=79be1efaf5e2403d649b3609548cda26CAS | 12044861PubMed |
[34] H. Chen, Z. K. Attieh, T. Su, B. A. Syed, H. Gao, R. M. Alaeddine, T. C. Fox, J. Usta, C. E. Naylor, R. W. Evans, A. T. McKie, G. J. Anderson, C. D. Vulpe, Blood 2004, 103, 3933.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvF2hsrs%3D&md5=3d400d4746a50185516aa3c1b4b1e367CAS | 14751926PubMed |
[35] B. A. Syed, N. J. Beaumont, A. Patel, C. E. Naylor, H. K. Bayele, C. L. Joannou, P. S. Rowe, R. W. Evans, S. K. Srai, Protein Eng. 2002, 15, 205.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtlGksbw%3D&md5=d2689e3de9303ef3494a6e385ad06f08CAS | 11932491PubMed |
[36] S. J. Lin, R. A. Pufahl, A. Dancis, T. V. O’Halloran, V. C. Culotta, J. Biol. Chem. 1997, 272, 9215.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisVGqsrw%3D&md5=744e950bd60b7a94b50afe1bc17f83baCAS | 9083054PubMed |
[37] C. Stoj, D. J. Kosman, FEBS Lett. 2003, 554, 422.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVentLw%3D&md5=60dfbad611875f2b7fb0dc9b69c072ccCAS | 14623105PubMed |
[38] C. S. Stoj, A. J. Augustine, E. I. Solomon, D. J. Kosman, J. Biol. Chem. 2007, 282, 7862.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis1Kgsbw%3D&md5=ae71adeed2775859fe73945f4030bae0CAS | 17220296PubMed |
[39] P. Bielli, L. Calabrese, Cell. Mol. Life Sci. 2002, 59, 1413.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xotlahur8%3D&md5=b58dfdbb4b208f67f39d4f22cc85d22bCAS | 12440766PubMed |
[40] F. W. Outten, C. E. Outten, J. Hale, T. V. O’Halloran, J. Biol. Chem. 2000, 275, 31024.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntlCisro%3D&md5=f2ff408d466c409c7146476c40cc37bfCAS | 10915804PubMed |
[41] S. A. Roberts, A. Weichsel, G. Grass, K. Thakali, J. T. Hazzard, G. Tollin, C. Rensing, W. R. Montfort, Proc. Natl. Acad. Sci. USA 2002, 99, 2766.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xit1Crt7w%3D&md5=ca14006cc792546812386b567fc215adCAS |
[42] S. A. Roberts, G. F. Wildner, G. Grass, A. Weichsel, A. Ambrus, C. Rensing, W. R. Montfort, J. Biol. Chem. 2003, 278, 31958.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVOnu7g%3D&md5=c8ca3f1f11229cca3a46d9db081540d7CAS | 12794077PubMed |
[43] Y. Li, J. Yin, G. Qu, L. Lv, S. Yang, X. G. Wang, Can. J. Microbiol. 2008, 54, 725.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOmsrbL&md5=c8ac0d9692049311d952739fcb078008CAS | 18772935PubMed |
[44] Z. Xiao, A. G. Wedd, Nat. Prod. Rep. 2010, 27, 768.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXls1Wrsbc%3D&md5=3a5271e9708ea7131664fb8470e74a0dCAS | 20379570PubMed |
[45] K. Y. Djoko, L. X. Chong, A. G. Wedd, Z. Xiao, J. Am. Chem. Soc. 2010, 132, 2005.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvFWmsg%3D%3D&md5=0aa20bf3e48dc4ccd239da0c20ff1755CAS | 20088522PubMed |
[46] Y. Miura, S. Tsujimura, S. Kurose, Y. Kamitaka, K. Kataoka, T. Sakurai, K. Kano, Fuel Cells 2009, 9, 70.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt12ktbw%3D&md5=cad1948230d1375a5f539d6fcb171ec2CAS |
[47] K. Kataoka, H. Komori, Y. Ueki, Y. Konno, Y. Kamitaka, S. Kurose, S. Tsujimura, Y. Higuchi, K. Kano, D. Seo, T. Sakurai, J. Mol. Biol. 2007, 373, 141.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVCgtbnE&md5=171842a0c2ec0a9a504901777f0a1ac9CAS | 17804014PubMed |
[48] L. Zhang, M. Koay, M. J. Maher, Z. Xiao, A. G. Wedd, J. Am. Chem. Soc. 2006, 128, 5834.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1yitbY%3D&md5=65d8698c8c01929e9287915de02210d5CAS | 16637653PubMed |
[49] K. Y. Djoko, Z. Xiao, D. L. Huffman, A. G. Wedd, Inorg. Chem. 2007, 46, 4560.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVCltbo%3D&md5=0cf406589337f56c2996ce36a341ca78CAS | 17477524PubMed |
[50] L. X. Chong, M. R. Ash, M. J. Maher, M. G. Hinds, Z. Xiao, A. G. Wedd, J. Am. Chem. Soc. 2009, 131, 3549.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVCisLc%3D&md5=dcd687b1e18425cf91ca1edd8567116aCAS | 19236095PubMed |
[51] S. Monchy, M. A. Benotmane, R. Wattiez, S. van Aelst, V. Auquier, B. Borremans, M. Mergeay, S. Taghavi, D. van der Lelie, T. Vallaeys, Microbiology 2006, 152, 1765.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1ert78%3D&md5=2a810f1b7f525a734f753f24b42c0a96CAS | 16735739PubMed |
[52] A. K. Wernimont, D. L. Huffman, L. A. Finney, B. Demeler, T. V. O’Halloran, A. C. Rosenzweig, J. Biol. Inorg. Chem. 2003, 8, 185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptFehtL0%3D&md5=0ec5a77929be78d70655a81909b73ea1CAS | 12459914PubMed |
[53] N. L. Brown, S. R. Barrett, J. Camakaris, B. T. Lee, D. A. Rouch, Mol. Microbiol. 1995, 17, 1153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptVKmsbk%3D&md5=e2977e85eb728fded7481dba37026a58CAS | 8594334PubMed |
[54] D. L. Huffman, J. Huyett, F. W. Outten, P. E. Doan, L. A. Finney, B. M. Hoffman, T. V. O’Halloran, Biochemistry 2002, 41, 10046.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1Gktrc%3D&md5=c369a8c42a6fd979c9a948bb26053918CAS | 12146969PubMed |
[55] B. M. Tebo, J. R. Bargar, B. G. Clement, G. J. Dick, K. J. Murray, D. Parker, R. Verity, S. M. Webb, Annu. Rev. Earth Planet. Sci. 2004, 32, 287.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvVyisro%3D&md5=ee4c4feabbd1d5350d1f06d8c7257a1eCAS |
[56] G. J. Dick, Y. E. Lee, B. M. Tebo, Appl. Environ. Microbiol. 2006, 72, 3184.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvFSqurc%3D&md5=8456548b689d5779648442a4c3d8845dCAS | 16672456PubMed |
[57] L. E. Mayhew, E. D. Swanner, A. P. Martin, A. S. Templeton, Appl. Environ. Microbiol. 2008, 74, 7265.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVymsb7J&md5=f2e2d30cfcc3e691d60b15c743dea494CAS | 18849460PubMed |