Fluoroazaindolines by an Uncommon Radical ipso-Substitution of a C-F Bond
Yann Laot A , Laurent Petit A , Ngoc Diem My Tran A and Samir Z. Zard A BA Laboratoire de Synthèse Organique, UMR 7652 CNRS/Ecole Polytechnique, 91128 Palaiseau, France.
B Corresponding author. Email: zard@poly.polytechnique.fr
Australian Journal of Chemistry 64(4) 416-425 https://doi.org/10.1071/CH10422
Submitted: 22 November 2010 Accepted: 27 January 2011 Published: 18 April 2011
Abstract
Trifluoroazaindoline derivatives are prepared using the first synthetically useful radical ipso-substitution of a fluorine atom. The initial procedure has been improved to allow the gram scale synthesis of these building blocks, which can be regioselectively substituted by nucleophiles under mild conditions to rapidly access a library of new molecules. Oxidation to the corresponding fluoroazaindole core has also been accomplished.
References
[1] For reviews on xanthate chemistry, see: B. Quiclet-Sire, S. Z. Zard, Top. Curr. Chem. 2006, 264, 201.(b) B. Quiclet-Sire, S. Z. Zard, Chemistry 2006, 12, 6002.
| Crossref | GoogleScholarGoogle Scholar |
(c) (c) S. Z. Zard, in Radical in Organic Chemistry (Eds P. Renaud, M. P. Sibi) 2001, Vol. 1, pp. 90–108 (Wiley-VCH, Weinheim).
(d) B. Quiclet-Sire, S. Z. Zard, Phosphorus Sulfur Silicon 1999, 153, 137.
| Crossref | GoogleScholarGoogle Scholar |
(e) B. Quiclet-Sire, S. Z. Zard, J. Chin. Chem. Soc. 1999, 46, 139.
(f) S. Z. Zard, Angew. Chem. Int. Ed. Engl. 1997, 36, 672.
| Crossref | GoogleScholarGoogle Scholar |
[2] E. Bacqué, M. El Qacemi, S. Z. Zard, Org. Lett. 2004, 6, 3671.
| Crossref | GoogleScholarGoogle Scholar | 15469320PubMed |
[3] (a) M. El Qacemi, L. Ricard, S. Z. Zard, Chem. Comm. 2006, 4422.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSms7zI&md5=3c76f891e008e7bc88c8eb86135fb2a7CAS |
(b) Y. Laot, L. Petit, S. Z. Zard, Chem. Commun. (Camb.) 2010, 46, 5784.
| Crossref | GoogleScholarGoogle Scholar |
[4] We wish to acknowledge in this respect our collaboration on the theoretical aspects with Dr Michelle Coote at the Australian National University.
[5] This work was reported in a preliminary communication: Y. Laot, L. Petit, S. Z. Zard, Org. Lett. 2010, 12, 3426.
[6] Pentafluoropyridine usually reacts with amines first at the 4-position then at the 2-position. See for example: C. A. Hargreaves, G. Sanford, R. Slater, D. S. Yufit, J. A. K. Howard, A. Vong, Tetrahedron 2007, 63, 5204.
(b) H. Amii, K. Uneyama, Chem. Rev. 2009, 109, 2119.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) G. M. Brooke, J. Fluor. Chem. 1997, 86, 1.
| Crossref | GoogleScholarGoogle Scholar |
(b) L. S. Kobrina, J. Fluor. Chem. 1989, 42, 301.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. A. Claret, G. H. Williams, J. Coulson, J. Chem. Soc. C 1968, 341.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) J. A. Struss, M. Sadeghipour, J. M. Tanko, Tetrahedron Lett. 2009, 50, 2119.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjs1amuro%3D&md5=5031579805e3c4fdfa9aeaafbccde5dcCAS |
(b) M. L. Maddess, E. Mainetti, Y. Harrak, C. Brancour, P. Devin, A.-L. Dhimane, L. Fensterbank, M. Malacria, Chem. Commun. (Camb.) 2007, 936.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Kim, N. Kim, W.-J. Chung, C. H. Cho, Synlett 2001, 937.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. M. Tanko, M. Sadeghipour, Angew. Chem. Int. Ed. 1999, 38, 159.
| Crossref | GoogleScholarGoogle Scholar |
(e) C. C. Huval, D. A. Singleton, Tetrahedron Lett. 1993, 34, 3041.
| Crossref | GoogleScholarGoogle Scholar |
(f) G. A. Kraus, B. Andersh, Q. Su, J. Shi, Tetrahedron Lett. 1993, 34, 1741.
| Crossref | GoogleScholarGoogle Scholar |
(g) S. Knapp, F. S. Gibson, Y. H. Choe, Tetrahedron Lett. 1990, 31, 5397.
| Crossref | GoogleScholarGoogle Scholar |
(h) G. F. Meijs, E. Rizzardo, S. H. Tang, Polym. Bull. 1990, 24, 501.
| Crossref | GoogleScholarGoogle Scholar |
[9] For a review, see: J. A. Walton, A. Studer, Acc. Chem. Res. 2005, 38, 794.
[10] (a) A. L. J. Beckwith, D. Crich, P. J. Duggan, Q. Yao, Chem. Rev. 1997, 97, 3273.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsFSiu7w%3D&md5=034a91e34c984a5bff19903bf0fb0fedCAS | 11851491PubMed |
(b) D. Crich, F. Brebion, D.-H. Suk, Top. Curr. Chem. 2006, 263, 1.
| Crossref | GoogleScholarGoogle Scholar |
[11] L. C. T. Shoute, J. P. Mittal, J. Phys. Chem. 1993, 97, 379.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXptVGltQ%3D%3D&md5=e418b547f17c141ebeb44c091bdae7a3CAS |
[12] For an example of the use of high temperature to force a difficult cyclization on an aromatic ring, see: B. Quiclet-Sire, S. Z. Zard, Chem. Commun. (Camb.) 2002, 2306.
[13] The use of ring-fused trifluoropyridine systems in further synthetic transformations has recently been described. See for example: G. Sandford, R. Slater, D. S. Yufit, J. A. K. Howard, A. Vong, J. Org. Chem. 2005, 70, 7208.
(b) M. W. Cartwright, L. Convery, T. Kraynck, G. Sandford, D. S. Yufit, J. A. K. Howard, J. A. Christopher, D. D. Miller, Tetrahedron 2010, 66, 519.
| Crossref | GoogleScholarGoogle Scholar |
[14] For some recent references, see: M. Jeanty, J. Blu, F. Suzenet, G. Guillaumet, Org. Lett. 2009, 11, 5142
(b) M. P. Huestis, K. Fagnou, Org. Lett. 2009, 11, 1357.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Echalier, K. Bettayeb, Y. Ferandin, O. Lozach, M. Clément, A. Valette, F. Liger, B. Marquet, J. P. Morris, J. A. Endicott, B. Joseph, L. Meijer, J. Med. Chem. 2008, 51, 737.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Jeanty, F. Suzenet, G. Guillaumet, J. Org. Chem. 2008, 73, 7390.
| Crossref | GoogleScholarGoogle Scholar |
(e) P. Wipf, J. P. Maciejewski, Org. Lett. 2008, 10, 4383.
| Crossref | GoogleScholarGoogle Scholar |
(f) Y. Ma, S. Breslin, I. Keresztes, E. Lobkovsky, D. B. Collum, J. Org. Chem. 2008, 73, 9610.
| Crossref | GoogleScholarGoogle Scholar |
(g) Y.-Q. Fang, Y. Yuen, M. Lautens, J. Org. Chem. 2007, 72, 5152.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) F. Popowycz, S. Routier, B. Joseph, J.-Y. Mérour, Tetrahedron 2007, 63, 1031.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis1Sh&md5=5cfc0310add96d939b500d4fa671b2f8CAS |
(b) F. Popowycz, B. Joseph, J. Y. Mérour, Tetrahedron 2007, 63, 8689.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. J. Song, J. T. Reeves, F. Gallou, Z. Tan, N. K. Yee, C. H. Senanayake, Chem. Soc. Rev. 2007, 36, 1120.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) V. A. Azimov, N. N. Bychikhina, A. I. Polezhaeva, M. D. Mashkovskii, L. N. Yakhontov, Pharm. Chem. J. 1980, 14, 308.
(b) T. Hara, K. Mori, T. Mizugaki, K. Ebitani, K. Kaneda, Tetrahedron Lett. 2003, 44, 6207.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. L. Borror, E. Chinoporos, M. P. Filosa, S. R. Herchen, S. P. Petersen, C. A. Stern, J. Org. Chem. 1988, 53, 2047.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. A. Weightgenant, I. Katsuyama, M. A. Bigi, S. J. Corden, J. T. Markiewicz, A. P. R. Zabell, K. T. Homan, O. Wiest, C. V. Stauffacher, P. Helquist, Heterocycles 2006, 70, 599.
| Crossref | GoogleScholarGoogle Scholar |
(e) U. Tilstam, M. Harre, T. Heckrodt, H. Weinmann, Tetrahedron Lett. 2001, 42, 5385.
| Crossref | GoogleScholarGoogle Scholar |
[17] K. C. Nicolaou, C. J. N. Mathison, T. Montagnon, J. Am. Chem. Soc. 2004, 126, 5192 and references therein.
[18] R. Poe, K. Schnapp, M. J. T. Young, J. Grayzar, M. S. Platz, J. Am. Chem. Soc. 1992, 114, 5054.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktVOgtLk%3D&md5=e323ae26251da2d2355e1a6b74ff18bdCAS |
[19] F. H. Compounds, Synthesis, Chemistry and Applications (Ed. V. A. Petrov) 2009 (J. Wiley & Sons, Inc.: Hoboken, NJ).