Femtosecond Fluorescence Upconversion Investigations on the Excited-State Photophysics of Curcumin
Tak W. Kee A C , Ramkrishna Adhikary B , Philip J. Carlson B , Prasun Mukherjee B and Jacob W. Petrich B CA Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia.
B Department of Chemistry, Iowa State University, Ames, IA 50011-3111, USA.
C Corresponding authors. Email: tak.kee@adelaide.edu.au, jwp@iastate.edu
Australian Journal of Chemistry 64(1) 23-30 https://doi.org/10.1071/CH10417
Submitted: 15 November 2010 Accepted: 21 December 2010 Published: 14 January 2011
Abstract
The demonstration of curcumin as a photodynamic therapy agent has generated a high level of interest in understanding the photoinduced chemical and physical properties of this naturally occurring, yellow-orange medicinal compound. Important photophysical processes that may be related to photodynamic therapy effects including excited-state intramolecular hydrogen atom transfer (ESIHT) occur within the femtosecond to picosecond time scales. Femtosecond fluorescence upconversion spectroscopy has sufficient time resolution to resolve and investigate these important photophysical processes. In this review, recent advances in using femtosecond fluorescence upconversion to reveal ultrafast solvation and ESIHT of curcumin are presented. The excited-state photophysics of curcumin has been investigated in alcohols and micellar solutions. The results of curcumin in methanol and ethylene glycol reveal the presence of two decay components in the excited-state kinetics with time scales of 12–20 ps and ∼100 ps. Similarly, in a micellar solution, biphasic kinetics are present with the fast decay component having a time constant of 3–8 ps, the slow decay component 50–80 ps. Deuteration of curcumin in both media leads to a pronounced isotope effect in the slow decay component, which suggests that ESIHT is an important photophysical process on this time scale. The results of multiwavelength fluorescence upconversion studies show that the fast component in the excited-state kinetics is due to ultrafast solvation. These advances form a part of the continuing efforts to elucidate the photodynamic therapy properties of curcumin.
References
[1] K. M. Mohandas, D. C. Desai, Indian J. Gastroenterol. 1999, 18, 118.| 1:STN:280:DyaK1MzjsFyrsw%3D%3D&md5=5901f01b2996ac8faf895afe53cd6aacCAS | 10407566PubMed |
[2] L. Moragoda, R. Jaszewski, A. P. N. Majumdar, Anticancer Res. 2001, 21, 873.
| 1:CAS:528:DC%2BD3MXksVOjsLY%3D&md5=40726181359e3408eb9ccf93e3b9704cCAS | 11396178PubMed |
[3] B. B. Aggarwal, A. Kumar, A. C. Bharti, Anticancer Res. 2003, 23, 363.
| 1:CAS:528:DC%2BD3sXislaqtLo%3D&md5=21a02a48a6bc42c936715688c3f57876CAS | 12680238PubMed |
[4] M. Shi, Q. Cai, L. Yao, Y. Mao, Y. Ming, G. Ouyang, Cell Biol. Int. 2006, 30, 221.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVWrt78%3D&md5=8d5e62fa8e1f1f7d7879831a1b584bd1CAS | 16376585PubMed |
[5] R. C. Lantz, G. J. Chen, A. M. Solyom, S. D. Jolad, B. N. Timmermann, Phytomedicine 2005, 12, 445.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MzlsVOmsQ%3D%3D&md5=ac7a5311a420419f2f27208803a7cf65CAS | 16008121PubMed |
[6] A. J. Ruby, G. Kuttan, K. D. Babu, K. N. Rajasekharan, R. Kuttan, Cancer Lett. 1995, 94, 79.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntFCksbs%3D&md5=12b97bfe313e353bd4412312ce7f8e5dCAS | 7621448PubMed |
[7] F. Yang, G. P. Lim, A. N. Begum, O. J. Ubeda, M. R. Simmons, S. S. Ambegaokar, P. P. Chen, R. Kayed, C. G. Glabe, S. A. Frautschy, G. M. Cole, J. Biol. Chem. 2005, 280, 5892.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlClt7w%3D&md5=130bd21fc3b5c4f09b9ac9226324a2dbCAS | 15590663PubMed |
[8] M. E. Egan, M. Pearson, S. A. Weiner, V. Rajendran, D. Rubin, J. Glockner-Pagel, S. Canny, K. Du, G. L. Lukacs, M. J. Caplan, Science 2004, 304, 600.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1Crsrs%3D&md5=752e3a732182f24edbf4dc07ec254011CAS | 15105504PubMed |
[9] D. Gopinath, M. R. Ahmed, K. Gomathi, K. Chitra, P. K. Sehgal, R. Jayakumar, Biomaterials 2004, 25, 1911.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlWksg%3D%3D&md5=6417c0227c45ea91a042aabb587f30c3CAS | 14738855PubMed |
[10] G. C. Jagetia, G. K. Rajanikant, Plast. Reconstr. Surg. 2005, 115, 515.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVKgsw%3D%3D&md5=7b8f86739d0af006969fbaaa57eeac0dCAS | 15692358PubMed |
[11] R. K. Maheshwari, A. K. Singh, J. Gaddipati, R. C. Srimal, Life Sci. 2006, 78, 2081.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisF2qsLo%3D&md5=520ec50a7d8aeb75b52aa2791378301fCAS | 16413584PubMed |
[12] T. A. Dahl, P. Bilski, K. J. Reszka, C. F. Chignell, Photochem. Photobiol. 1994, 59, 290.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXis1CksLg%3D&md5=096db836613f07df690eb00637545b23CAS | 8016207PubMed |
[13] T. A. Dahl, W. M. McGowan, M. A. Shand, V. S. Srinivasan, Arch. Microbiol. 1989, 151, 183.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtlWnsr4%3D&md5=2c14e4423b98c0fe47cafd02927cb868CAS | 2655550PubMed |
[14] H. H. Tønnesen, H. de Vries, J. Karlsen, G. B. van Henegouwen, J. Pharm. Sci. 1987, 76, 371.
| Crossref | GoogleScholarGoogle Scholar | 3309256PubMed |
[15] A. A. Gorman, I. Hamblett, V. S. Srinivasan, P. D. Wood, Photochem. Photobiol. 1994, 59, 389.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkvVartL4%3D&md5=a45a929932cf1bf67e3d69241e694dfeCAS | 8022881PubMed |
[16] W.-H. Chan, H.-J. Wu, J. Cell. Biochem. 2004, 92, 200.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvFequ7Y%3D&md5=472789825f94f7114e5fb0218d323309CAS | 15095415PubMed |
[17] C. F. Chignell, P. Bilski, K. J. Reszka, A. G. Motten, R. H. Sik, T. A. Dahl, Photochem. Photobiol. 1994, 59, 295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXksVKgsrw%3D&md5=5d68aa3f4bf901b84c6d487431d55c99CAS | 8016208PubMed |
[18] H. Koon, A. W. N. Leung, K. K. M. Yue, N. K. Mak, J. Environ. Pathol. Toxicol. Oncol. 2006, 25, 205.
| 1:CAS:528:DC%2BD28XjtV2ntr0%3D&md5=29c2b2d34c82d9b9d6ef9ec96f838cc5CAS | 16566718PubMed |
[19] K. Park, J.-H. Lee, Oncol. Rep. 2007, 17, 537.
| 1:CAS:528:DC%2BD2sXivF2hu70%3D&md5=fe9d09337fb594da68ae0be916842dc6CAS | 17273730PubMed |
[20] M. L. van Iersel, J. P. Ploemen, I. Struik, C. van Amersfoort, A. E. Keyzer, J. G. Schefferlie, P. J. van Bladeren, Chem. Biol. Interact. 1996, 102, 117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmvFarsrc%3D&md5=8c40c25c1995c3fb5ccdf08c092cc0e4CAS | 8950226PubMed |
[21] C. D. Lao, M. F. Demierre, V. K. Sondok, Expert Rev. Anticancer Ther. 2006, 6, 1559.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvF2jsA%3D%3D&md5=9184103425b61b659d2504423c4e34a0CAS | 17134361PubMed |
[22] Y. E. Marín, B. A. Wall, S. Wang, J. Namkoong, J. J. Martino, J. Suh, H. J. Lee, A. B. Rabson, C. S. Yang, S. Chen, J.-H. Ryu, Melanoma Res. 2007, 17, 274.
| Crossref | GoogleScholarGoogle Scholar | 17885582PubMed |
[23] L. G. Menon, R. Kuttan, G. Kuttan, Cancer Lett. 1995, 95, 221.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnsFWgsL0%3D&md5=29686535b4c7409de29c4e92d1aad789CAS | 7656234PubMed |
[24] J. Odot, P. Albert, A. Carlier, M. Tarpin, J. Devy, C. Madoulet, Int. J. Cancer 2004, 111, 381.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlKmu7Y%3D&md5=4a68a3f8849a4bfe103c15636b9f270fCAS | 15221965PubMed |
[25] D. R. Siwak, S. Shishodia, B. B. Aggarwal, R. Kurzrock, Cancer 2005, 104, 879.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVSltr3I&md5=8517596c4da9afacc8584f53dcd72bafCAS | 16007726PubMed |
[26] M. Zheng, S. Ekmekcioglu, E. T. Walch, C.-H. Tang, E. A. Grimm, Melanoma Res. 2004, 14, 165.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksF2ls7w%3D&md5=79f07e014c59264fa6f56d258c7e2061CAS | 15179184PubMed |
[27] S. M. Khopde, K. I. Priyadarsini, P. Venkatesan, M. N. A. Rao, Biophys. Chem. 1999, 80, 83.
| Crossref | GoogleScholarGoogle Scholar |
[28] E. Kunchandy, M. N. A. Rao, Int. J. Pharm. 1989, 57, 173.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhtFWlu7s%3D&md5=dfd8c10d990bf980d08bfd4498ae1ee7CAS |
[29] E. Kunchandy, M. N. A. Rao, Int. J. Pharm. 1990, 58, 237.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhslWqtLw%3D&md5=3d83ff3da21186fd5061e1029a37ab08CAS |
[30] K. I. Priyadarsini, Free Radic. Biol. Med. 1997, 23, 838.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtVOitLs%3D&md5=860af5b5bb05da999b3baa9f9c72fc42CAS | 9378362PubMed |
[31] O. P. Sharma, Biochem. Pharmacol. 1976, 25, 1811.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XlvVKntbc%3D&md5=cc57b26bd990749b12fcf9663dcf1916CAS | 942483PubMed |
[32] S. V. Jovanovic, S. Steenken, C. W. Boone, M. G. Simic, J. Am. Chem. Soc. 1999, 121, 9677.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmt1yqsr4%3D&md5=7db0457a3381ae7359a8c36a442e8da6CAS |
[33] Y. J. Wang, M. H. Pan, A. L. Cheng, L. I. Lin, Y. S. Ho, C. Y. Hsieh, J. K. Lin, J. Pharm. Biomed. Anal. 1997, 15, 1867.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvVejtbo%3D&md5=ec632b5818b32585110d8526af35522dCAS | 9278892PubMed |
[34] H. H. Tønnesen, J. Karlsen, Z. Lebensm. Unters. Forsch. 1985, 180, 402.
| Crossref | GoogleScholarGoogle Scholar | 4013525PubMed |
[35] M. H. M. Leung, H. Colangelo, T. W. Kee, Langmuir 2008, 24, 5672.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls1Wht7c%3D&md5=f3252b4d57aee5f9e02e2f8fae7e1303CAS | 18459746PubMed |
[36] M. H. M. Leung, T. W. Kee, Langmuir 2009, 25, 5773.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjs1ahtLg%3D&md5=1fd6e678660ab2d64aa06d78d3af6319CAS | 19320475PubMed |
[37] Z. Wang, M. H. M. Leung, T. W. Kee, D. S. English, Langmuir 2010, 26, 5520.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVensL%2FP&md5=fc3aed1f6de2b43f7c68c751b12f48fdCAS | 19921826PubMed |
[38] Harada T., Pham D.-T., Leung M. H. M., Ngo H. T., Lincoln S. F., Easton C. J., Kee T. W., J. Phys. Chem. B 2011, in press.
[39] H. H. Tønnesen, Pharmazie 2002, 57, 820.
| 12561244PubMed |
[40] E. M. Bruzell, E. Morisbak, H. H. Tønnesen, Photochem. Photobiol. Sci. 2005, 4, 523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsF2htbk%3D&md5=4ad2a1d7710ce6c7239e35b85b9eb756CAS | 15986060PubMed |
[41] M. O. Iwunze, J. Mol. Liq. 2004, 111, 161.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFSrsrs%3D&md5=f842a9beac088057337224d4b5d2a50aCAS |
[42] A. Kunwar, A. Barik, R. Pandey, K. I. Priyadarsini, Biochim. Biophys. Acta, Gen. Subj. 2006, 1760, 1513.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVagtL3P&md5=055d7a67fc92070781a18bd2e0d05832CAS |
[43] F. Payton, P. Sandusky, W. L. Alworth, J. Nat. Prod. 2007, 70, 143.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsVylsg%3D%3D&md5=443fb337b908f16f97b26a0eb41a5a96CAS | 17315954PubMed |
[44] R. Adhikary, P. Mukherjee, T. W. Kee, J. W. Petrich, J. Phys. Chem. B 2009, 113, 5255.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFyksb4%3D&md5=af8c6d702ff5db40af1fd3cc3d753398CAS | 19317434PubMed |
[45] R. Adhikary, P. J. Carlson, T. W. Kee, J. W. Petrich, J. Phys. Chem. B 2010, 114, 2997.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1GgtLc%3D&md5=8ee079dc39c6c84dbbbcd2da0536abf2CAS | 20136104PubMed |
[46] P. Miskovsky, Curr. Drug Targets 2002, 3, 55.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitFSmsbc%3D&md5=7b34a7ef9cb43e6cb47f65fe04b59dc7CAS | 11899265PubMed |
[47] K. Das, D. S. English, J. W. Petrich, J. Phys. Chem. A 1997, 101, 3241.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisVOqsb0%3D&md5=bd060a21230a57bae3c8b535a6a6f94cCAS |
[48] K. Das, D. S. English, J. W. Petrich, J. Am. Chem. Soc. 1997, 119, 2763.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvV2qtb4%3D&md5=6232fe9a8ec9e9b31df183cac455f149CAS |
[49] D. S. English, K. Das, K. D. Ashby, J. Park, J. W. Petrich, E. W. Castner, J. Am. Chem. Soc. 1997, 119, 11585.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnt1eqtbc%3D&md5=aa05c42305ac093a731e08e92d247452CAS |
[50] D. S. English, W. Zhang, G. A. Kraus, J. W. Petrich, J. Am. Chem. Soc. 1997, 119, 2980.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXit1CjtrY%3D&md5=db12759128bf057bc2111bb46b60eeb7CAS |
[51] J. W. Petrich, Int. Rev. Phys. Chem. 2000, 19, 479.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsFOntrk%3D&md5=9fdd1faba441e17b49d961a3ef205f6aCAS |
[52] A. V. Smirnov, K. Das, D. S. English, Z. Wan, G. A. Kraus, J. W. Petrich, J. Phys. Chem. A 1999, 103, 7949.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvVGitrg%3D&md5=c2d8eba70d8b62e56503b10726e14f92CAS |
[53] F. Gai, M. J. Fehr, J. W. Petrich, J. Am. Chem. Soc. 1993, 115, 3384.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhvVartL0%3D&md5=a5060f771cb090d07694ce9d4bd1487cCAS |
[54] K. Das, A. V. Smirnov, J. Wen, P. Miskovsky, J. W. Petrich, Photochem. Photobiol. 1999, 69, 633.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvF2qsL0%3D&md5=1063ec21864c8d9cdec998c874b593a1CAS | 10378001PubMed |
[55] R. S. Fee, M. Maroncelli, Chem. Phys. 1994, 183, 235.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktF2ntL0%3D&md5=9942160df0d13c34e2d5a0648dc98676CAS |
[56] M. Maroncelli, G. R. Fleming, J. Chem. Phys. 1987, 86, 6221.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXksVymu7k%3D&md5=719691f8f3dc011129c975651a9351ebCAS |
[57] P. Fita, N. Urbanska, C. Radzewicz, J. Waluk, Z. Phys. Chem. 2008, 222, 1165.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2js7vE&md5=c8bb570ab2e63a653f9cf2a0b9f2f0e8CAS |
[58] S. M. Khopde, K. I. Priyadarsini, D. K. Palit, T. Mukherjee, Photochem. Photobiol. 2000, 72, 625.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVKitbg%3D&md5=07224f109872b49dd404306c6dd81403CAS | 11107847PubMed |
[59] S. Abrash, S. Repinec, R. M. Hochstrasser, J. Chem. Phys. 1990, 93, 1041.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltlWgt7Y%3D&md5=f62b6865893483bbd0c7b42639897eb1CAS |
[60] L. Nikowa, D. Schwarzer, J. Troe, J. Schroeder, J. Chem. Phys. 1992, 97, 4827.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xms1Wgurk%3D&md5=37269d0fae1acc408242e1009b54ae59CAS |
[61] J. K. Rice, A. P. Baronavski, J. Phys. Chem. 1992, 96, 3359.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhvFent7g%3D&md5=efd4569655a41a883a92021dc96113feCAS |
[62] D. C. Todd, G. R. Fleming, J. Chem. Phys. 1993, 98, 269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhvFSqt70%3D&md5=52479dfde05cb0bba9ee677768fc5dd9CAS |
[63] D. C. Todd, J. M. Jean, S. J. Rosenthal, A. J. Ruggiero, D. Yang, G. R. Fleming, J. Chem. Phys. 1990, 93, 8658.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtVSrs7o%3D&md5=828ac6550ea72595d1a78d76f0163b3fCAS |
[64] R. S. Moog, M. Maroncelli, J. Phys. Chem. 1991, 95, 10359.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmvVyns70%3D&md5=413dd4ce228ccbff6f15de02014a3194CAS |
[65] L. Nardo, R. Paderno, A. Andreoni, M. Masson, T. Haukvik, H. H. Toennesen, Spectroscopy 2008, 22, 187.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVOqsLk%3D&md5=2278b5ea8975bf7b3e42ff475f0d2a8bCAS |
[66] A. M. S. Silva, P. Filipe, R. Seixas, D. Pinto, L. K. Patterson, G. L. Hug, J. A. S. Cavaleiro, J. C. Maziere, R. Santus, P. Morliere, J. Phys. Chem. B 2008, 112, 11456.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtValu7%2FL&md5=b2b75a644d494e938154fbb6626f4ec3CAS | 18729319PubMed |
[67] E. C. C. Melo, S. M. B. Costa, A. L. Maçanta, H. Santos, J. Colloid Interface Sci. 1991, 141, 439.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtV2gs78%3D&md5=75338a496017e9950686fca388080484CAS |
[68] M. L. Horng, J. A. Gardecki, A. Papazyan, M. Maroncelli, J. Phys. Chem. 1995, 99, 17311.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptFKqt7k%3D&md5=6360a3d0836d2a52ad90d9a8396eff7fCAS |
[69] R. Jimenez, G. R. Fleming, P. V. Kumar, M. Maroncelli, Nature 1994, 369, 471.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXks1Kksr4%3D&md5=8d862f430edaa18c391fd9651a2a15abCAS |
[70] G. R. Fleming, M. Cho, Annu. Rev. Phys. Chem. 1996, 47, 109.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmslKntb4%3D&md5=a6f70f86093f0c165ecc84b8b29e79eaCAS |
[71] B. Bagchi, Chem. Rev. 2005, 105, 3197.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXotFSis7c%3D&md5=e1c89b76a7a8f472ad34e5a22193c183CAS | 16159150PubMed |
[72] K. Bhattacharyya, Acc. Chem. Res. 2003, 36, 95.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xot1Kru7c%3D&md5=b3d541d3f4e05e7883d1ea3715e5f46dCAS | 12589694PubMed |
[73] K. Bhattacharyya, Chem. Commun. 2008, 2848.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlGitrg%3D&md5=f89703712cec1f1503ad79b3a72f4b4aCAS |
[74] N. Nandi, K. Bhattacharyya, B. Bagchi, Chem. Rev. 2000, 100, 2013.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtV2mtro%3D&md5=6591fd5065b2db1ef475f356a3af3e28CAS | 11749282PubMed |
[75] S. Dey, D. K. Sasmal, D. K. Das, K. Bhattacharyya, ChemPhysChem 2008, 9, 2848.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFyjsQ%3D%3D&md5=4f4f51fe1fc1ea6a3df3ea479a922e76CAS | 19058278PubMed |
[76] S. Pal, B. Bagchi, S. Balasubramanian, J. Phys. Chem. B 2005, 109, 12879.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVChsr4%3D&md5=84794a181160141def7385a2550e0068CAS | 16852599PubMed |
[77] S. K. Pal, J. Peon, B. Bagchi, A. H. Zewail, J. Phys. Chem. B 2002, 106, 12376.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosVCisr4%3D&md5=038107866449712e03e039610621aa64CAS |
[78] M. Kumbhakar, S. Nath, T. Mukherjee, H. Pal, J. Chem. Phys. 2004, 121, 6026.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1Kqs70%3D&md5=b4c05e2057fae429ce131c44abd63330CAS | 15367031PubMed |
[79] H. Shirota, Y. Tamoto, H. Segawa, J. Phys. Chem. A 2004, 108, 3244.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitFyisLY%3D&md5=703a91a9d23508c29570c092e4330414CAS |
[80] S. Balasubramanian, B. Bagchi, J. Phys. Chem. B 2001, 105, 12529.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1Wru7s%3D&md5=54463c3045496539f26094c55d41aa4bCAS |
[81] D. Mandal, S. Sen, K. Bhattacharyya, T. Tahara, Chem. Phys. Lett. 2002, 359, 77.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkslCms7o%3D&md5=6ac7c0bbfa06f88dc8b578ecea6c7a4cCAS |
[82] P. Sen, S. Mukherjee, A. Halder, K. Bhattacharyya, Chem. Phys. Lett. 2004, 385, 357.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKlsrk%3D&md5=5476c79ff8ca37ad6759dea835e4536bCAS |
[83] S. K. Pal, D. Sukul, D. Mandal, S. Sen, K. Bhattacharyya, Chem. Phys. Lett. 2000, 327, 91.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvFWjtbY%3D&md5=66d86ba7efe4d8f867810b3063fa1f0bCAS |
[84] S. K. Pal, A. H. Zewail, Chem. Rev. 2004, 104, 2099.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisFaqs7k%3D&md5=d91ec52a07662e798ab6932edaed8797CAS | 15080722PubMed |