Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Self-ordering Electrochemistry: A Simple Approach for Engineering Nanopore and Nanotube Arrays for Emerging Applications*

Dusan Losic A C , Leonara Velleman B , Krishna Kant A , Tushar Kumeria A , Karan Gulati A , Joe G. Shapter B , David A. Beattie A and Spomenka Simovic A
+ Author Affiliations
- Author Affiliations

A University of South Australia, Ian Wark Research Institute, Mawson Lakes Campus, Mawson Lakes, Adelaide, SA 5095, Australia.

B Flinders University, School of Chemical and Physical Science, Bedford Park, Adelaide, SA 5042, Australia.

C Corresponding author. Email: dusan.losic@unisa.edu.au

Australian Journal of Chemistry 64(3) 294-301 https://doi.org/10.1071/CH10398
Submitted: 31 October 2010  Accepted: 23 December 2010   Published: 11 March 2011

Abstract

In this paper, we present recent work from our group focussed on the fabrication of nanopore and nanotube arrays using self-ordered electrochemistry, and their application in several key areas including template synthesis, molecular separation, optical sensing, and drug delivery. We have fabricated nanoporous anodic aluminium oxide (AAO) with controlled pore dimensions (20–200 nm) and shapes, and used them as templates for the preparation of gold nanorod/nanotube arrays and gold nanotube membranes with characteristic properties such as surface enhanced Raman scattering and selective molecular transport. The application of AAO nanopores as a sensing platform for reflective interferometric detection is demonstrated. Finally, a drug release study on fabricated titania nanotubes confirms their potential for implantable drug delivery applications.


References

[1]  S. Mann, G. A. Ozin, Nature 1996, 382, 313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xks1WgurY%3D&md5=7549c3c972da37dbe200e8b5fbd50c68CAS |

[2]  R. W. Murray, Chem. Rev. 2008, 108, 2688.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlKrsbY%3D&md5=aa1d8b387f0e602cfdc03111a70fa6a9CAS | 18558753PubMed |

[3]  C. R. Martin, Z. S. Siwy, Science 2007, 317, 331.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFWltLk%3D&md5=2bb714ef9bae701d9f4f83f13f5c0584CAS | 17641190PubMed |

[4]  M. Ulbricht, Polymer 2006, 47, 2217.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislWls7w%3D&md5=4b372d9b658882889f6d27425c2521ceCAS |

[5]  C. C. Striemer, T. R. Gaborski, J. L. McGrath, P. M. Fauchet, Nature 2007, 445, 749.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhslSqsrg%3D&md5=f835e4a5376969f7c039c7fdb4dfa4a7CAS | 17301789PubMed |

[6]  M. Steinhart, R. B. Wehrspohn, U. Gosele, J. H. Wendorff, Angew. Chem. Int. Ed. 2004, 43, 1334.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFSksb4%3D&md5=5a298d9a1f63251b1a5bd008d1f72a6cCAS |

[7]  W. Lee, M. Alexe, K. Nielsch, U. Gosele, Chem. Mater. 2005, 17, 3325.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1KhurY%3D&md5=72e9b6d643df6ca3a9fc03fa0fc2f1faCAS |

[8]  P. Apel, Radiat. Meas. 2001, 34, 559.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsVemt74%3D&md5=7e755462d42dd2fe499233f9e25209ccCAS |

[9]  A. Ghicov, P. Schmuki, Chem. Commun. 2009, 2791.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslyqurY%3D&md5=c734defedddb9e59d49437b2c5b26015CAS |

[10]  H. Cölfen, S. Mann, Angew. Chem. Int. Ed. 2003, 42, 2350.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  J. W. Diggle, T. C. Downie, S. W. Goulding, Chem. Rev. 1969, 69, 365.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXks1entbY%3D&md5=422f8ac492d141543d8c9fb180b782b7CAS |

[12]  O. Jessensky, F. Muller, U. Gosele, Appl. Phys. Lett. 1998, 72, 1173.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhsVyrsL8%3D&md5=b404085b0d3b3650e7b75fa3ca0feff3CAS |

[13]  W. Lee, R. Ji, U. Gosele, K. Nielsch, Nat. Mater. 2006, 5, 741.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovFyks74%3D&md5=a74a480d9eba0e38102d4341321f51e8CAS | 16921361PubMed |

[14]  H. Chik, J. M. Xu, Mater. Sci. Eng. Rep. 2004, 43, 103.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  C. A. Grimes, J. Mater. Chem. 2007, 17, 1451.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjslelu7g%3D&md5=035172549f54c8ddb95ad55394e307ffCAS |

[16]  G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, Sol. Energy Mater. Sol. Cells 2006, 90, 2011.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvF2iu7Y%3D&md5=6934f138220c1ad8cb40abc09df63915CAS |

[17]  J. Park, S. Bauer, P. Schmuki, K. von der Mark, Nano Lett. 2009, 9, 3157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsFamsrY%3D&md5=023f73f016df6286a284c8140ff464b9CAS | 19653637PubMed |

[18]  P. Roy, D. Kim, I. Paramasivam, P. Schmuki, Electrochem. Commun. 2009, 11, 1001.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVOktbY%3D&md5=d6c3068111db192ca0e5bfb083c46704CAS |

[19]  H. Masuda, F. Hasegwa, S. Ono, J. Electrochem. Soc. 1997, 144, L127.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjvVGkt70%3D&md5=62bd7bd1cb364c46069b194fd8e32364CAS |

[20]  H. Masuda, K. Fukuda, Science 1995, 268, 1466.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmtFKktbc%3D&md5=122d94b0a7de2495ec2d637f76d8aac5CAS | 17843666PubMed |

[21]  G. E. Thompson, Thin Solid Films 1997, 297, 192.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktVGit7k%3D&md5=b44f270499a2434ed2b837735714cce8CAS |

[22]  S. Ono, H. Asoh, M. Saito, M. Ishiguro, Electrochemistry 2003, 71, 105.
         | 1:CAS:528:DC%2BD3sXhtVyqurc%3D&md5=c78d1809d5b1c906c77f99a0aceee471CAS |

[23]  M. Lillo, D. Losic, J. Membr. Sci. 2009, 327, 11.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWju7o%3D&md5=2f2758db8a6a3232c46a8c7c7e8bd2baCAS |

[24]  D. Losic, M. Lillo, D. Losic, Small 2009, 5, 1392.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFKjsrg%3D&md5=f75cf7d8080f72500d4f12052326fef6CAS | 19296559PubMed |

[25]  D. Losic, D. Losic, Langmuir 2009, 25, 5426.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVCgsr8%3D&md5=29a70931c493345815b95e11e61297c9CAS | 19391576PubMed |

[26]  R. E. Sabzi, K. Kant, D. Losic, Electrochim. Acta 2010, 55, 1829.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Oitb8%3D&md5=fa78da214eb13190e68d95346b6f0b62CAS |

[27]  D. Losic, S. Simovic, Expert Opin. Drug Deliv. 2009, 6, 1363.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1aqtLfL&md5=9f78cccf8322d72cc103d6f5614bb0deCAS | 19860534PubMed |

[28]  Y. Piao, H. Lim, J. Y. Chang, W. Y. Lee, H. Kim, Electrochim. Acta 2005, 50, 2997.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvVCrsrk%3D&md5=35ea67bc9d5bb484101f386ddd49298eCAS |

[29]  D. Losic, J. G. Shapter, J. G. Mitchell, N. H. Voelcker, Nanotechnology 2005, 16, 2275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1CiurvL&md5=7c21f3434613bb87215fc93b4e82b4a6CAS | 20818007PubMed |

[30]  J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, Nat. Mater. 2008, 7, 442.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVejt7g%3D&md5=17561ecb158e2976ad656155658b36dcCAS | 18497851PubMed |

[31]  K. A. Willets, R. P. Van Duyne, Annu. Rev. Phys. Chem. 2007, 58, 267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslSitrg%3D&md5=b0d360508aa7d0cfda28e67cb639a20bCAS | 17067281PubMed |

[32]  P. W. Bohn, Annu. Rev. Anal. Chem. 2009, 2, 279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsFaqsbY%3D&md5=fe7ecf72fe15ac5dc6b46d3bef58a259CAS |

[33]  M. Nishizawa, V. P. Menon, C. R. Martin, Science 1995, 268, 700.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlsVGisbk%3D&md5=64827ea2377373aca274d0410b1b41abCAS | 17832383PubMed |

[34]  L. Velleman, J. G. Shapter, D. Losic, J. Membr. Sci. 2009, 328, 121.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Cgtbo%3D&md5=010091c59cacd08a6c2c63ede25a032dCAS |

[35]  A. M. M. Jani, E. J. Anglin, S. J. P. McInnes, D. Losic, J. G. Shapter, N. H. Voelcker, Chem. Commun. 2009, 3062.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  C. R. Martin, M. Nishizawa, K. Jirage, M. S. Kang, S. B. Lee, Adv. Mater. 2001, 13, 1351.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntFWitL8%3D&md5=9e9e06b0e58e0d982748f4c680a1d0f5CAS |

[37]  L. Velleman, G. Triani, P. J. Evans, J. G. Shapter, D. Losic, Microporous Mesoporous Mater. 2009, 126, 87.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2gs7jJ&md5=8f3392b955ccc8d731c4e53bab4f026fCAS |

[38]  V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, M. R. Ghadiri, Science 1997, 278, 840.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvFOqsb4%3D&md5=ded9a433060a5951ae4ebc157a6b99f6CAS | 9346478PubMed |

[39]  A. Janshoff, K. P. S. Dancil, C. Steinem, D. P. Greiner, V. S. Y. Lin, C. Gurtner, K. Motesharei, M. J. Sailor, M. R. Ghadiri, J. Am. Chem. Soc. 1998, 120, 12108.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntVKgurg%3D&md5=5cf796f95f846c65701a398a6748aa65CAS |

[40]  K. S. Mun, S. D. Alvarez, W. Y. Choi, M. J. Sailor, ACS Nano 2010, 4, 2070.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVyit7s%3D&md5=b4d4c19854f59499a40088a2f6a80d78CAS | 20356100PubMed |

[41]  S. D. Alvarez, C. P. Li, C. E. Chiang, I. K. Schuller, M. J. Sailor, ACS Nano 2009, 3, 3301.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKksLfO&md5=2d39b5ef069c80f7654bb146bfdfb4d8CAS | 19719156PubMed |

[42]  Y. Y. Song, H. Hildebrand, P. Schmuki, Electrochem. Commun. 2009, 11, 1429.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFWnt7o%3D&md5=4862e63969271229d9c2b249548df458CAS |

[43]  K. C. Popat, M. Eltgroth, T. J. LaTempa, C. A. Grimes, T. A. Desai, Biomaterials 2007, 28, 4880.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsV2ktb0%3D&md5=a7cc39da80312162105c2bdf928bea7aCAS | 17697708PubMed |

[44]  K. C. Popat, M. Eltgroth, T. J. La Tempa, C. A. Grimes, T. A. Desai, Small 2007, 3, 1878.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKqt73O&md5=2e22d9db3eb175a8fa3180153855b333CAS | 17935080PubMed |

[45]  S. Simovic, D. Losic, K. Vasilev, Chem. Commun. 2010, 46, 1317.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslWgtb0%3D&md5=00c9932e729d96f816d7bdd532f36e91CAS |

[46]  K. Vasilev, Z. Poh, K. Kant, J. Chan, A. Michelmore, D. Losic, Biomaterials 2010, 31, 532.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWnsbjJ&md5=82040f3c47c79370400a1daf9020ce4dCAS | 19819014PubMed |

[47]  K. Kant, D. Losic, Phys. Status Solidi RRL 2009, 3, 139.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1eju74%3D&md5=5f951a7c2c0bdbfd687be57206cb6bd5CAS |

[48]  D. Losic, J. G. Shapter, J. J. Gooding, Aust. J. Chem. 2001, 54, 643.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFGmu7s%3D&md5=acb72e36d4ea3a9a2d1ca3fe24f94c3bCAS |

[49]  J. Mazurkiewicz, F. J. Mearns, D. Losic, L. Weeks, E. R. Waclawik, C. T. Rogers, J. G. Shapter, J. J. Gooding, J. Vac. Sci. Technol. B 2002, 20, 2265.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsFOjsb4%3D&md5=b2348ce6d302f603626cc6c27d64fb39CAS |