Copper(ii) Complexes with cis-Epoxysuccinate Ligand: Syntheses, Crystal Structures, and Magnetic Properties
Shao-Ming Fang A C , E. Carolina Sañudo B , Min Hu A , Qiang Zhang A , Li-Ming Zhou A and Chun-Sen Liu A CA Zhengzhou University of Light Industry, Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou, Henan 450002, China.
B Institut de Nanociència i Nanotecnologia i Departament de Química Inorgànica, Universitat de Barcelona, Diagonal, 647, 08028-Barcelona, Spain.
C Corresponding authors. Email: chunsenliu@zzuli.edu.cn, smfang@zzuli.edu.cn
Australian Journal of Chemistry 64(2) 217-226 https://doi.org/10.1071/CH10371
Submitted: 10 October 2010 Accepted: 5 January 2011 Published: 15 February 2011
Abstract
Three CuII complexes with cis-epoxysuccinate ligand were synthesized and structurally characterized: [Cu(ces)(phen)]2 (1), [Cu(ces)(bpy)]2 (2), and {[Cu2(ces)(pp)2(CH3OH)]}∞ (3), (ces = cis-epoxysuccinate, phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine, and pp = 3-(2-pyridyl)pyrazole with pyrazolyl N-donor deprotonated). Structural analysis reveals that both 1 and 2 have the very similar dinuclear units that are extended by the intermolecular supramolecular interactions, such as C–H⋯O, C–H⋯π, and aromatic π⋯π stacking interactions, to give rise to the higher-dimensional frameworks. Complex 3 has a two-dimensional (2D) layered structure that is further assembled to form a three-dimensional framework by the inter-layer C–H⋯O hydrogen-bonding and C–H⋯π interactions. A structural comparison with those of our previous work in the absence of auxiliary co-ligand suggests that the introduction of 2,2′-bipyridyl-like molecules plays an important role in constructing the final structures of 1–3. Magnetic measurements demonstrate that 1 and 2 exhibit ferromagnetic coupling with the corresponding J values of 1.8 cm–1 for 1 and 1.5 cm–1 for 2, whereas 3 shows more complicated magnetic coupling.
References
[1] (a) S. Qiu, G. Zhu, Coord. Chem. Rev. 2009, 253, 2891.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlagt77J&md5=a8e1ab033bce6d72cdcaecb7f2140552CAS |
(b) J.-P. Zhang, X.-C. Huang, X.-M. Chen, Chem. Soc. Rev. 2009, 38, 2385.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. Reineke, M. O’Keeffe, O. M. Yaghi, Acc. Chem. Res. 2001, 34, 319.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. Leininger, B. Olenyuk, P. J. Stang, Chem. Rev. 2000, 100, 853.
| Crossref | GoogleScholarGoogle Scholar |
(e) R. E. Morris, X. Bu, Nat. Chem. 2010, 2, 353.
| Crossref | GoogleScholarGoogle Scholar |
(f) Batten S. R., Neville S. M., Turner D. R., Coordination Polymers: Design, Analysis and Application 2008 (Royal Society of Chemistry (RSC) Publishing: Cambridge).
[2] (a) H.-L. Jiang, B. Liu, T. Akita, M. Haruta, H. Sakurai, Q. Xu, J. Am. Chem. Soc. 2009, 131, 11302.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptFChtLs%3D&md5=4f25d85352960ffcc09a8b7df48e5076CAS | 19637919PubMed |
(b) X. Shi, X. Wang, L. Li, H. Hou, Y. Fan, Cryst. Growth Des. 2010, 10, 2490.
| Crossref | GoogleScholarGoogle Scholar |
(c) C.-S. Liu, J.-J. Wang, Z. Chang, L.-F. Yan, X.-H. Bu, CrystEngComm 2010, 12, 1833.
| Crossref | GoogleScholarGoogle Scholar |
(d) D.-Y. Wu, O. Sato, Y. Einaga, C.-Y. Duan, Angew. Chem. Int. Ed. 2009, 48, 1475.
| Crossref | GoogleScholarGoogle Scholar |
(e) X.-D. Chen, X.-H. Zhao, M. Chen, M. Du, Chemistry 2009, 15, 12974.
| Crossref | GoogleScholarGoogle Scholar |
[3] S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktFShtLk%3D&md5=c48ac085d0c80ae9dfbf971ebf9aff87CAS |
[4] C.-S. Liu, J.-J. Wang, L.-F. Yan, Z. Chang, X.-H. Bu, E. C. Sañudo, J. Ribas, Inorg. Chem. 2007, 46, 6299.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1SnsL4%3D&md5=6e426ddbfca76912dc8c9b273b837c7bCAS | 17608470PubMed |
[5] J.-H. He, C.-H. Ho, C.-W. Wang, Y. Ding, L.-J. Chen, Z.-L. Wang, Cryst. Growth Des. 2009, 9, 17.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVShsb3O&md5=2d7e55e3db757c86af30f357be91fbf9CAS |
[6] J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, Nature 2000, 404, 982.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtFyns7k%3D&md5=b01dda87f5a8dfba00739a9321a6cd86CAS | 10801124PubMed |
[7] L. Qin, J.-S. Hu, L.-F. Huang, Y.-Z. Li, Z.-J. Guo, H.-G. Zheng, Cryst. Growth Des. 2010, 10, 4176.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFyjt74%3D&md5=41407d99e578e789b83ffeb8a0b93225CAS |
[8] (a) M. Du, Z.-H. Zhang, X.-J. Zhao, Q. Xu, Inorg. Chem. 2006, 45, 5785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFWmsrk%3D&md5=c489b5b284713378623aa195fd2bdd3cCAS | 16841982PubMed |
(b) C.-S. Liu, E. C. Sañudo, M. Hu, L.-M. Zhou, L.-Q. Guo, S.-T. Ma, L.-J. Gao, S.-M. Fang, CrystEngComm 2010, 12, 853.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. J. Steel, Acc. Chem. Res. 2005, 38, 243.
| Crossref | GoogleScholarGoogle Scholar |
[9] J. Tang, J. S. Costa, A. Golobič, B. Kozlevčar, A. Robertazzi, A. V. Vargiu, P. Gamez, J. Reedijk, Inorg. Chem. 2009, 48, 5473.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1OlsLk%3D&md5=d75802804ac7f54d19593ea717173968CAS | 19425586PubMed |
[10] (a) M. Du, X.-J. Jiang, X.-J. Zhao, Inorg. Chem. 2007, 46, 3984.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1Sitrs%3D&md5=2969eab29b451b3f6a638eabf2343612CAS | 17432846PubMed |
(b) X.-L. Wang, Y.-F. Bi, H.-Y. Lin, G.-C. Liu, Cryst. Growth Des. 2007, 7, 1086.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Wang, Y. Hou, E.-B. Wang, Y.-G. Li, L. Xu, J. Peng, S.-X. Liu, C.-W. Hu, New J. Chem. 2003, 27, 1144.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. Wang, Z. Lin, Y.-C. Ou, N.-L. Yang, Y.-H. Zhang, M.-L. Tong, Inorg. Chem. 2008, 47, 190.
| Crossref | GoogleScholarGoogle Scholar |
(e) E. Yang, J. Zhang, Z.-J. Li, S. Gao, Y. Kang, Y.-B. Chen, Y.-H. Wen, Y.-G. Yao, Inorg. Chem. 2004, 43, 6525.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) J. Yang, Q. Yue, G.-D. Li, J.-J. Cao, G.-H. Li, J.-S. Chen, Inorg. Chem. 2006, 45, 2857.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVequrk%3D&md5=bcf6d6e34d3b3e1bb226cfef583b783dCAS | 16562941PubMed |
(b) C. Serre, C. Mellot-Draznieks, S. Surble, N. Audebrand, Y. Filinchuk, G. Ferey, Science 2007, 315, 1828.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. Wang, C. N. Moorefield, M. Panzer, G. R. Newkome, Chem. Commun. 2005, 4405.
| Crossref | GoogleScholarGoogle Scholar |
[12] C.-S. Liu, E. C. Sañudo, J.-J. Wang, Z. Chang, L.-F. Yan, X.-H. Bu, Aust. J. Chem. 2008, 61, 382.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFGgt70%3D&md5=ddaf3da1923d2e49f83cdf9e6a1fabadCAS |
[13] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O. M. Yaghi, Science 2002, 295, 469.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyrtLjP&md5=baf3e8f3bc7515498ba46b016beb843eCAS | 11799235PubMed |
[14] C.-S. Liu, M. Hu, S.-T. Ma, Q. Zhang, L.-M. Zhou, L.-J. Gao, S.-M. Fang, Aust. J. Chem. 2010, 63, 463.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvV2rsb0%3D&md5=c1db8b943ff0d487cf1b9a9a3bec5044CAS |
[15] (a) M. C. Guillem, J. Latorre, R. Martínez-Máñez, J. Payá, S. García-Granda, E. Pérez-Carreño, F. Gómez-Beltrán, Polyhedron 1993, 12, 1681.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsVSgtbw%3D&md5=55e8d95e579e7e0b026eb245eb553e78CAS |
(b) P. Thuéry, C. Villiers, J. Jaud, M. Ephritikhine, B. Masci, J. Am. Chem. Soc. 2004, 126, 6838.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. Hanson, N. Calin, D. Bugaris, M. Scancella, S. C. Sevov, J. Am. Chem. Soc. 2004, 126, 10502.
| Crossref | GoogleScholarGoogle Scholar |
(d) W. Ai, H. He, L. Liu, Q. Liu, X. Lv, J. Li, D. Sun, CrystEngComm 2008, 10, 1480.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) Y. Kim, D.-Y. Jung, Inorg. Chim. Acta 2002, 338, 229.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xotlyqt7g%3D&md5=1cf72bf51c7c5c3e98d054b060e83050CAS |
(b) J. Luo, F. Jiang, R. Wang, M. Hong, Inorg. Chem. Commun. 2004, 7, 638.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) J. Wang, Y.-H. Zhang, M.-L. Tong, Chem. Commun. 2006, 3166.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. Wang, L.-L. Zheng, C.-J. Li, Y.-Z. Zheng, M.-L. Tong, Cryst. Growth Des. 2006, 6, 357.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Wang, S. Hu, M.-L. Tong, Eur. J. Inorg. Chem. 2006, 2069.
| Crossref | GoogleScholarGoogle Scholar |
[18] (a) Y. Kim, D.-Y. Jung, Chem. Commun. 2002, 908.
| Crossref | GoogleScholarGoogle Scholar |
(b) W. Bi, R. Cao, D. Sun, D. Yuan, X. Li, Y. Wang, X. Li, M. Hong, Chem. Commun. 2004, 2104.
| Crossref | GoogleScholarGoogle Scholar |
[19] (a) X.-Y. Wang, S. C. Sevov, Chem. Mater. 2007, 19, 3763.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVSjtrk%3D&md5=49ceb07bd279dd1ba6b696971fbd3cf0CAS |
(b) X.-Y. Wang, M. Scancella, S. C. Sevov, Chem. Mater. 2007, 19, 4506.
| Crossref | GoogleScholarGoogle Scholar |
[20] (a) B.-H. Ye, M.-L. Tong, X.-M. Chen, Coord. Chem. Rev. 2005, 249, 545.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gntr4%3D&md5=6b9f813d76139f8060eb48d28e46d201CAS |
(b) D.-R. Xiao, Y.-G. Li, E.-B. Wang, L.-L. Fan, H.-Y. An, Z.-M. Su, L. Xu, Inorg. Chem. 2007, 46, 4158.
| Crossref | GoogleScholarGoogle Scholar |
[21] (a) M. Du, C.-P. Li, X.-J. Zhao, Q. Yu, CrystEngComm 2007, 9, 1011.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtleqtb3P&md5=75db3889100eae3a9cea2f42cf68b932CAS |
(b) C.-S. Liu, X.-S. Shi, J.-R. Li, J.-J. Wang, X.-H. Bu, Cryst. Growth Des. 2006, 6, 656.
| Crossref | GoogleScholarGoogle Scholar |
[22] S.-M. Fang, Q. Zhang, M. Hu, E. C. Sañudo, M. Du, C.-S. Liu, Inorg. Chem. 2010, 49, 9617.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFygsbbL&md5=53d57eb89cfb695fc7ed78d15dd4f511CAS | 20853877PubMed |
[23] Nakamoto K., Infrared and Raman Spectra of Inorganic and Donor Hydrogen Bond Coordination Compounds 1986 (John Wiley & Sons: New York, NY).
[24] G. B. Deacon, R. J. Phillips, Coord. Chem. Rev. 1980, 33, 227.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXjvVOqsw%3D%3D&md5=7309f80da9a9a3f327fc47f3e07ff0b0CAS |
[25] A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans. 1984, 1349.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtVeitb8%3D&md5=39f1bd2885cb3d160277426faf2dd6c4CAS |
[26] (a) M. Magini, Inorg. Chem. 1982, 21, 1535.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhtlSitbk%3D&md5=fde85db80e8e1c20849c2b695159948bCAS |
(b) P. C. Burns, F. C. Hawthorne, Am. Mineral. 1993, 78, 187.
[27] (a) A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson, R. Taylor, J. Chem. Soc., Dalton Trans. 1989, S1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXivVCmsw%3D%3D&md5=f701326afcb6f04af6f3f2b9748e3bddCAS |
(b) M. O’Keefe, N. E. Brese, J. Am. Chem. Soc. 1991, 113, 3226.
| Crossref | GoogleScholarGoogle Scholar |
[28] Spek A. L., PLATON, A Multipurpose Crystallographic Tool 2005 (Utrecht University: Utrecht, The Netherlands).
[29] Desiraju G. R., Steiner T., The Weak Hydrogen Bond in Structural Chemistry and Biology 1999 (Oxford University Press: Oxford).
[30] H⋯π interactions, please see: Nishio M., Umezawa Y., Honda K., Tsuboyama S., Suezawa H., CrystEngComm 2009, 11, 1757.
Nishio M., Hirota M., Umezawa Y., A comprehensive monograph: The CH/π Interaction Evidence, Nature, and Consequences 1998 (Wiley-VCH: New York, NY).
For more details, please also refer to a website established by M. Nishio: http://www.tim.hi-ho.ne.jp/dionisio/.
[31] Janiak C., J. Chem. Soc., Dalton Trans. 2000, 3885 and references therein.
[32] Argent S. P., Adams H., Riis-Johannessen T., Jeffery J. C., Harding L. P., Ward M. D., J. Am. Chem. Soc. 2006, 128, 72 and references therein.
(b) D. A. McMorran, P. J. Steel, Chem. Commun. 2002, 2120.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. D. Ward, J. A. McCleverty, J. C. Jeffery, Coord. Chem. Rev. 2001, 222, 251.
| Crossref | GoogleScholarGoogle Scholar |
[33] (a) J.-J. Wang, C.-S. Liu, T.-L. Hu, Z. Chang, C.-Y. Li, L.-F. Yan, P.-Q. Chen, X.-H. Bu, Z.-M. Li, Q. Wu, L.-J. Zhao, Z. Wang, X.-Z. Zhang, CrystEngComm 2008, 10, 681.
| Crossref | GoogleScholarGoogle Scholar |
(b) T.-L. Hu, R.-Q. Zou, J.-R. Li, X.-H. Bu, Dalton Trans. 2008, 1302.
| Crossref | GoogleScholarGoogle Scholar |
[34] O’Connor C. J., Progress in Inorganic Chemistry 1982, Vol. 29, p. 203 (Ed. S. J. Lippard) (Wiley-Interscience: New York).
[35] Englehardt L., Rainey C., Francis Marion University, USA. Fit Mart package: http://www.opensourcephysics.org/misc/copyright.html.
[36] A. Rodríguez-Fortea, P. Alemany, S. Alvarez, E. Ruiz, Chemistry 2001, 7, 627.
| Crossref | GoogleScholarGoogle Scholar | 11261660PubMed |
[37] J.-R. Li, Q. Yu, E. C. Sañudo, Y. Tao, X.-H. Bu, Chem. Commun. 2007, 2602.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1egtLc%3D&md5=faeba80f617bbe74b520b3e1b7b64ac2CAS |
[38] E. Spodine, A. M. Atria, J. Valenzuela, J. Jalocha, J. Manzur, A. M. García, M. T. Garland, O. Peña, J.-Y. Saillard, J. Chem. Soc., Dalton Trans. 1999, 3029.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXls1eiu7g%3D&md5=f7c27252900a1c8472c9a9e0a776e7ffCAS |
[39] SAINT Software Reference Manual 1998 (Bruker AXS: Madison, WI).
[40] Sheldrick G. M., SADABS 1996, Siemens Area Detector Absorption Corrected Software (University of Göttingen: Germany).
[41] Sheldrick G. M., SHELXTL NT 1997, Version 5.1; Program for Solution and Refinement of Crystal Structures (University of Göttingen: Germany).