Critical Design Factors for Optical Imaging with Metal Coordination Complexes
David Parker AA Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK. Email: david.parker@durham.ac.uk
David Parker read Chemistry at Christ Church, Oxford and worked with Dr. J. M. Brown for his D.Phil, studying mechanisms of asymmetric catalysis. In 1980–81 he enjoyed a post doctoral period as a NATO Fellow with Professor J. M. Lehn in Strasbourg, before his appointment in January 1982 to a Lectureship in Chemistry at Durham University. He was promoted to a Chair at Durham in 1992, and was elected to the Fellowship of the Royal Society in 2002. His main research interests span many aspects of metal complexation phenomena; embracing synthesis, chirality, analysis, mechanism and function. |
Australian Journal of Chemistry 64(3) 239-243 https://doi.org/10.1071/CH10365
Submitted: 4 October 2010 Accepted: 1 November 2010 Published: 11 March 2011
Abstract
Metal coordination complexes are emerging as an important class of optical imaging probes. They may function not only as stains for particular cell compartments, but also as responsive probes, able to report on changes in local ionic composition. The critical factors to consider in designing such probes are reviewed, including issues of cell uptake and compartmentalization, the degree of non-invasiveness and their functional performance. Prospects are considered for the development of lanthanide(iii) probes capable of reporting changes in local bicarbonate, citrate, and lactate.
References
[1] R. Heintzmann, G. Ficz, Brief. Funct. Genomics Proteomics 2006, 5, 289.| Crossref | GoogleScholarGoogle Scholar |
[2] L. D. Lavis, R. T. Raines, ACS Chem. Biol. 2008, 3, 142.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVeis7c%3D&md5=a6dbbc15ac89bc3395bf781eb49e6a43CAS | 18355003PubMed |
[3] R. Y. Tsien, Annu. Rev. Biochem. 1998, 67, 509.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsFOmsb8%3D&md5=eab19740730abc51e89c2cb37120c02dCAS | 9759496PubMed |
[4] W. C. W. Chen, D. J. Maxwell, X. H. Gao, R. E. Bailey, M. Y. Han, S. M. Nie, Curr. Opin. Biotech. 2002, 13, 40.
[5] A. J. Amoroso, M. P. Coogan, J. E. Dunne, V. Fernandez-Moreira, J. B. Hess, A. J. Hayes, D. Lloyd, C. Millet, S. J. A. Pope, C. Williams, Chem. Commun. 2007, 3066.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvVCisb8%3D&md5=3de8872e3865cac855c3d13f5a5c8663CAS |
[6] M. R. Gill, J. Garcia-Lara, S. J. Foster, C. Smythe, G. Battaglia, J. A. Thomas, Nat. Chem. 2010, 1, 662.
| Crossref | GoogleScholarGoogle Scholar |
[7] V. Fernández-Moreira, F. L. Thorp-Greenwood, M. P. Coogan, Chem. Commun. 2010, 46, 186.
| Crossref | GoogleScholarGoogle Scholar |
[8] M. X. Yu, Q. Zhao, L. X. Shi, F. Y. Li, Z. G. Zhou, H. Yang, T. Yia, C. H. Huang, Chem. Commun. 2008, 2115.
| Crossref | GoogleScholarGoogle Scholar |
[9] S. W. Botchway, M. Charnley, J. W. Haycock, A. W. Parker, D. L. Rochester, J. A. Weinstein, J. A. G. Williams, Proc. Natl. Acad. Sci. USA 2008, 105, 16071.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSju73K&md5=7b7aaad3308ac90ccb3faedf84b03e01CAS |
[10] P. Wu, E. L. M. Wong, D. L. Ma, G. S. M. Tong, K. M. Ng, C. M. Che, Chemistry 2009, 15, 3652.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksleis7c%3D&md5=2750d65c7b7eef67a1d3bf2a9b151bb2CAS | 19204965PubMed |
[11] H. Ke, H. Wang, W.-K. Wong, N.-K. Mak, D. W. J. Kwong, K.-L. Wong, H.-L. Tam, Chem. Commun. 2010, 46, 6678.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2gs7fI&md5=4243fcae18e37b0edbcbe4dd743bcb17CAS |
[12] C. P. Montgomery, B. S. Murray, E. J. New, R. Pal, D. Parker, Acc. Chem. Res. 2009, 42, 925.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlehu7c%3D&md5=4b68974e34b23971cc3d4763205928c2CAS | 19191558PubMed |
[13] E. J. New, D. Parker, D. G. Smith, J. W. Walton, Curr. Opin. Chem. Biol. 2010, 14, 238.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFKntL4%3D&md5=533fb89e1de7344f5e4173b380496b9cCAS | 19884038PubMed |
[14] R. A. Poole, G. Bobba, M. J. Cann, J.-C. Frias, D. Parker, R. D. Peacock, Org. Biomol. Chem. 2005, 3, 1013.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvF2js7g%3D&md5=59bc01f21dc851a6cb9d889b0284785cCAS | 15750644PubMed |
[15] A. S. Chauvin, S. Comby, B. Song, C. D. B. Vandevyver, F. Thomas, J. C. G. Bunzli, Chemistry 2007, 13, 9515.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVahs77M&md5=7a17174b009ec989f6f19bfa25409f94CAS | 17879248PubMed |
[16] H. C. Manning, S. M. Smith, M. S. Haviland, S. Bai, M. F. K. Cederquist, N. Stella, D. J. Bornhop, Bioconjug. Chem. 2006, 17, 735.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktVert74%3D&md5=6fdb778b63950001f071e5cec83aea22CAS | 16704212PubMed |
[17] J. Yu, D. Parker, R. Pal, R. A. Poole, M. J. Cann, J. Am. Chem. Soc. 2006, 128, 2294.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xoslagsg%3D%3D&md5=3bc1aed24af042686f4c3ef95f8888edCAS | 16478184PubMed |
[18] R. Pal, D. Parker, Org. Biomol. Chem. 2008, 6, 1020.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVCju74%3D&md5=93ffa65f7d0f006654aed67463ccfdd4CAS | 18327327PubMed |
[19] R. Pal, D. Parker, Chem. Commun. 2007, 474.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFKqtQ%3D%3D&md5=0f1823eb02e00b7d410234a89e381b6dCAS |
[20] B. Song, G. Wang, M. Tan, J. Yuan, J. Am. Chem. Soc. 2006, 128, 13442.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvFeqtb0%3D&md5=508ed9a3c08c14fec4936b56be16fbcdCAS | 17031957PubMed |
[21] K. Hanaoka, K. Kikuchi, S. Kobayashi, T. Nagano, J. Am. Chem. Soc. 2007, 129, 13502.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFert7vI&md5=b99df0bed0513cc715f0336cdb62efd4CAS | 17927176PubMed |
[22] F. Kielar, A. Congreve, G. L. Law, E. J. New, D. Parker, K.-L. Wong, P. Castreno, J. de Mendoza, Chem. Commun. 2008, 2435.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvF2ktr8%3D&md5=2d2909b70471fef54acb3157d25b4baaCAS |
[23] E. J. New, D. Parker, Org. Biomol. Chem. 2009, 7, 851.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvFGru7c%3D&md5=bba5f866a283ae90eb7bbb58b6d90015CAS | 19225664PubMed |
[24] E. J. New, A. Congreve, D. Parker, Chem. Sci. 2010, 1, 111.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlWht7w%3D&md5=4155d701fc516f85b8ec091f02b5ff5cCAS |
[25] F. Kielar, C. P. Montgomery, E. J. New, D. Parker, R. A. Poole, S. L. Richardson, P. A. Stenson, Org. Biomol. Chem. 2007, 5, 2975.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXps1Gkt7o%3D&md5=3e9c556322a124e63aee1324d63e95ffCAS | 17728864PubMed |
[26] G.-L. Law, D. Parker, S. L. Richardson, K.-L. Wong, Dalton Trans. 2009, 8481.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1agsrzL&md5=e2fabd8c251536e9d899df568791e403CAS | 19809721PubMed |
[27] R. A. Poole, C. P. Montgomery, E. J. New, A. Congreve, D. Parker, M. Bolta, Org. Biomol. Chem. 2007, 5, 2055.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1ens74%3D&md5=85f577620144f1be686a50606374ed54CAS | 17581648PubMed |
[28] Y. Bretonniere, M. J. Cann, D. Parker, R. J. Slater, Org. Biomol. Chem. 2004, 2, 1624.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt1artLk%3D&md5=ea22b08839f5e126012923c755380575CAS | 15162215PubMed |
[29] F. Kielar, G.-L. Law, E. J. New, D. Parker, Org. Biomol. Chem. 2008, 6, 2256.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlCqsb4%3D&md5=acb64e8ae04a1a8a05142a2c3c9d7d7aCAS | 18563255PubMed |
[30] E. J. New, D. Parker, R. D. Peacock, Dalton Trans. 2009, 672.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltV2htw%3D%3D&md5=619134ad8a564bf7c596efdcdf77ca69CAS | 19378560PubMed |
[31] B. S. Murray, E. J. New, R. Pal, D. Parker, Org. Biomol. Chem. 2008, 6, 2085.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXms1Oqt7g%3D&md5=054ece7b0e4eb18f75d324d2e2312282CAS | 18528570PubMed |
[32] R. Pal, L. C. Costello, D. Parker, Org. Biomol. Chem. 2009, 7, 1525.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFKqsLk%3D&md5=70209a661d318c0dce8d90ddb10e688dCAS | 19343236PubMed |
[33] G.-L. Law, C. Man, D. Parker, J. W. Walton, Chem. Commun. 2010, 46, 2391.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1Gmsbk%3D&md5=4a6a020e2cec970a124d9c57b111090fCAS |
[34] N. A. O’Connor, N. Stevens, D. Samaroo, M. R. Solomon, A. A. Marti, J. Dyer, H. Vishwasrao, D. L. Atkins, E. R. Kandel, N. J. Turro, Chem. Commun. 2009, 2640.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFKkt7w%3D&md5=1db876544af68a57badabc6e25cde463CAS |
[35] C. A. Puckett, J. K. Barton, J. Am. Chem. Soc. 2009, 131, 8738.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvFCks7g%3D&md5=bf319c0444e2f115b652ad05fe3a866eCAS | 19505141PubMed |