Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Characterization of the Uptake and Intracellular Trafficking of G4 Polyamidoamine Dendrimers

Chin-Ling Pai A B E , Ming-Jium Shieh A C E , Pei-Jen Lou D , Fei-Hong Huang B , Tzu-Wen Wang A and Ping-Shan Lai B F
+ Author Affiliations
- Author Affiliations

A Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan, Republic of China.

B Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, Republic of China.

C Department of Oncology, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan, Republic of China.

D Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan, Republic of China.

E Both authors contributed equally to this work.

F Corresponding author. Email: pslai@email.nchu.edu.tw

Australian Journal of Chemistry 64(3) 302-308 https://doi.org/10.1071/CH10358
Submitted: 30 September 2010  Accepted: 14 December 2010   Published: 11 March 2011

Abstract

Polyamidoamine (PAMAM) dendrimers are highly branched spherical polymers that have emerged as potent synthetic drug and gene carriers; however, much remains to be learned about the mechanism of dendrimer-mediated cellular uptake. In this study, the endocytic pathway and intracellular trafficking of generation 4 (G4) PAMAM dendrimers were evaluated via fluorescein isothiocyanate (FITC) conjugation. We found that the G4-FITC dendrimers were internalized by energy-dependent and non-specific endocytic pathways. Interesting, G4-FITC dendrimers can not only buffer the endosomal/lysosomal pH but also co-localize with lysosomal markers over a period of 3 to 12 h, after which the signal decreased in the lysosomes and began to co-localize with the mitochondrial marker. This study contributes to the understanding of the molecular behaviour of G4 PAMAM dendrimers in a cellular environment and will facilitate the development of more effective PAMAM-mediated drug and gene delivery systems.


References

[1]  J. Toth, I. Boszormenyi, Z. S. Majer, I. Laczko, C. Malvy, M. Hollosi, J. R. Bertrand, Biochem. Biophys. Res. Commun. 2002, 293, 18.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksVGisbs%3D&md5=e37d084b1dff4f87087e71cd9c6aa346CAS | 12054557PubMed |

[2]  B. Klajnert, M. Bryszewska, Acta Biochim. Pol. 2001, 48, 199.
         | 1:CAS:528:DC%2BD3MXjs1Sls7w%3D&md5=c1762110e3b7e15619fd81e44a1a5762CAS | 11440170PubMed |

[3]  A. K. Patri, I. J. Majoros, J. R. Baker, Curr. Opin. Chem. Biol. 2002, 6, 466.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVyjtbc%3D&md5=27bdacad9a5cf733939200154a957b88CAS | 12133722PubMed |

[4]  P. S. Lai, P. J. Lou, C. L. Peng, C. L. Pai, W. N. Yen, M. Y. Huang, T. H. Young, M. J. Shieh, J. Controlled Release 2007, 122, 39.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsV2rtb4%3D&md5=b3ac9f60cfc87414202e89911d8f1ca6CAS |

[5]  A. U. Bielinska, J. F. Kukowska-Latallo, J. Johnson, D. A. Tomalia, J. R. Baker, Nucleic Acids Res. 1996, 24, 2176.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkvVOjs7o%3D&md5=01f8784f5af0d67e1b537171b20e8291CAS | 8668551PubMed |

[6]  B. J. Roessler, A. U. Bielinska, K. Janczak, I. Lee, J. R. Baker, Biochem. Biophys. Res. Commun. 2001, 283, 124.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivFGht7g%3D&md5=3a727fa9754fc5b63fa40d54c06fae88CAS | 11322778PubMed |

[7]  K. M. Kitchens, R. B. Kolhatkar, P. W. Swaan, H. Ghandehari, Mol. Pharm. 2008, 5, 364.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitFejtQ%3D%3D&md5=3c0aca554f600427ef2bc17f862b5de1CAS | 18173246PubMed |

[8]  K. M. Kitchens, R. B. Kolhatkar, P. W. Swaan, N. D. Eddington, H. Ghandehari, Pharm. Res. 2006, 23, 2818.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Kmt7zE&md5=c4ede16b8deb69a5b9e29e4316c7a728CAS | 17094034PubMed |

[9]  F. P. Seib, A. T. Jones, R. Duncan, J. Controlled Release 2007, 117, 291.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFCgtLs%3D&md5=1a3b618f0bc4775ac588bfaedabb21dcCAS |

[10]  K. M. Kitchens, A. B. Foraker, R. B. Kolhatkar, P. W. Swaan, H. Ghandehari, Pharm. Res. 2007, 24, 2138.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2msbzJ&md5=a19f6fd67b7c00f664d71667fe9235cfCAS | 17701324PubMed |

[11]  J. Dennig, Top. Curr. Chem. 2003, 228, 227.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotF2ks70%3D&md5=9285570b12eed966a63aa57b83b3a47cCAS | 21132487PubMed |

[12]  A. Kichler, C. Leborgne, E. Coeytaux, O. Danos, J. Gene Med. 2001, 3, 135.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvkslGksQ%3D%3D&md5=28684660d87a79050b2eaf6ff4f94b1bCAS | 11318112PubMed |

[13]  B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 4th edn 2002 (Garland Science Publishing: New York).

[14]  J. H. Lee, K. E. Cha, M. S. Kim, H. W. Hong, D. J. Chung, G. Ryu, H. Myung, Toxicol. Lett. 2009, 190, 202.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFSnsLrJ&md5=c0204cb7c47f2f373224a03fcf3f7dccCAS | 19643170PubMed |

[15]  S. Ohkuma, B. Poole, Proc. Natl. Acad. Sci. USA 1978, 75, 3327.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXlvFegsbY%3D&md5=6767fa93f34b3852b4bf6d5fe62cd83aCAS |

[16]  N. Malik, R. Wiwattanapatapee, R. Klopsch, K. Lorenz, H. Frey, J. W. Weener, E. W. Meijer, W. Paulus, R. Duncan, J. Controlled Release 2000, 65, 133.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtl2qs7o%3D&md5=00db7a3ad81df9c8f671265a81a182deCAS |

[17]  B. M. Myers, P. S. Tietz, J. E. Tarara, N. F. LaRusso, Hepatology 1995, 22, 1519.
         | 1:CAS:528:DyaK28XjvVOl&md5=3bd4f3c06a26f05cfe6eb051676e0e9bCAS | 7590671PubMed |

[18]  N. D. Sonawane, F. C. Szoka, N. D. Sonawane, F. C. Szoka, J. Biol. Chem. 2003, 278, 44826.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXoslWlsbw%3D&md5=eb019a9916894de90e13686aea4b8547CAS | 12944394PubMed |

[19]  P. Fernando, C. Bensimon, A. Smith, L. Wei, S. Moreau, Y. Duan, R. G. Wells, T. Ruddy, J. Nucl. Med. 2010, 51, 392.

[20]  S. M. Khan, R. M. Smigrodzki, R. H. Swerdlow, Am. J. Physiol. Cell Physiol. 2007, 292, C658.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjt1Gmtb8%3D&md5=aa680e82c7743b3c070263c42d6f421aCAS | 16899549PubMed |

[21]  M. J. Shieh, C. L. Peng, P. J. Lou, C. H. Chiu, T. Y. Tsai, C. Y. Hsu, C. Y. Yeh, P. S. Lai, J. Controlled Release 2008, 129, 200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFOmsro%3D&md5=8fbe18d2c3257cb3d893e1e6b591037eCAS |

[22]  M. Hussain, M. Shchepinov, M. Sohail, I. F. Benter, A. J. Hollins, E. M. Southern, S. Akhtar, J. Controlled Release 2004, 99, 139.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1Kjt7g%3D&md5=7c18c40a88fa0eaf77a725b77fca1e03CAS |

[23]  C. Goncalves, E. Mennesson, R. Fuchs, J. P. Gorvel, P. Midoux, C. Pichon, Mol. Ther. 2004, 10, 373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1Cmsbs%3D&md5=66c48e8c3c18ec160a5c4186143f1c5cCAS | 15294184PubMed |

[24]  N. Bayer, D. Schober, E. Prchla, R. F. Murphy, D. Blaas, R. Fuchs, J. Virol. 1998, 72, 9645.
         | 1:CAS:528:DyaK1cXnsF2nsb8%3D&md5=550339367c56549a893d7f701f9b7735CAS | 9811698PubMed |

[25]  D. Tondera, A. Santel, R. Schwarzer, S. Dames, K. Giese, A. Klippel, J. Kaufmann, J. Biol. Chem. 2004, 279, 31544.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslOrsbs%3D&md5=91a79b9185c679e39489e706c3c15f3dCAS | 15155745PubMed |