Characterization of the Uptake and Intracellular Trafficking of G4 Polyamidoamine Dendrimers
Chin-Ling Pai A B E , Ming-Jium Shieh A C E , Pei-Jen Lou D , Fei-Hong Huang B , Tzu-Wen Wang A and Ping-Shan Lai B FA Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan, Republic of China.
B Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, Republic of China.
C Department of Oncology, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan, Republic of China.
D Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan, Republic of China.
E Both authors contributed equally to this work.
F Corresponding author. Email: pslai@email.nchu.edu.tw
Australian Journal of Chemistry 64(3) 302-308 https://doi.org/10.1071/CH10358
Submitted: 30 September 2010 Accepted: 14 December 2010 Published: 11 March 2011
Abstract
Polyamidoamine (PAMAM) dendrimers are highly branched spherical polymers that have emerged as potent synthetic drug and gene carriers; however, much remains to be learned about the mechanism of dendrimer-mediated cellular uptake. In this study, the endocytic pathway and intracellular trafficking of generation 4 (G4) PAMAM dendrimers were evaluated via fluorescein isothiocyanate (FITC) conjugation. We found that the G4-FITC dendrimers were internalized by energy-dependent and non-specific endocytic pathways. Interesting, G4-FITC dendrimers can not only buffer the endosomal/lysosomal pH but also co-localize with lysosomal markers over a period of 3 to 12 h, after which the signal decreased in the lysosomes and began to co-localize with the mitochondrial marker. This study contributes to the understanding of the molecular behaviour of G4 PAMAM dendrimers in a cellular environment and will facilitate the development of more effective PAMAM-mediated drug and gene delivery systems.
References
[1] J. Toth, I. Boszormenyi, Z. S. Majer, I. Laczko, C. Malvy, M. Hollosi, J. R. Bertrand, Biochem. Biophys. Res. Commun. 2002, 293, 18.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksVGisbs%3D&md5=e37d084b1dff4f87087e71cd9c6aa346CAS | 12054557PubMed |
[2] B. Klajnert, M. Bryszewska, Acta Biochim. Pol. 2001, 48, 199.
| 1:CAS:528:DC%2BD3MXjs1Sls7w%3D&md5=c1762110e3b7e15619fd81e44a1a5762CAS | 11440170PubMed |
[3] A. K. Patri, I. J. Majoros, J. R. Baker, Curr. Opin. Chem. Biol. 2002, 6, 466.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVyjtbc%3D&md5=27bdacad9a5cf733939200154a957b88CAS | 12133722PubMed |
[4] P. S. Lai, P. J. Lou, C. L. Peng, C. L. Pai, W. N. Yen, M. Y. Huang, T. H. Young, M. J. Shieh, J. Controlled Release 2007, 122, 39.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsV2rtb4%3D&md5=b3ac9f60cfc87414202e89911d8f1ca6CAS |
[5] A. U. Bielinska, J. F. Kukowska-Latallo, J. Johnson, D. A. Tomalia, J. R. Baker, Nucleic Acids Res. 1996, 24, 2176.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkvVOjs7o%3D&md5=01f8784f5af0d67e1b537171b20e8291CAS | 8668551PubMed |
[6] B. J. Roessler, A. U. Bielinska, K. Janczak, I. Lee, J. R. Baker, Biochem. Biophys. Res. Commun. 2001, 283, 124.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivFGht7g%3D&md5=3a727fa9754fc5b63fa40d54c06fae88CAS | 11322778PubMed |
[7] K. M. Kitchens, R. B. Kolhatkar, P. W. Swaan, H. Ghandehari, Mol. Pharm. 2008, 5, 364.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitFejtQ%3D%3D&md5=3c0aca554f600427ef2bc17f862b5de1CAS | 18173246PubMed |
[8] K. M. Kitchens, R. B. Kolhatkar, P. W. Swaan, N. D. Eddington, H. Ghandehari, Pharm. Res. 2006, 23, 2818.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Kmt7zE&md5=c4ede16b8deb69a5b9e29e4316c7a728CAS | 17094034PubMed |
[9] F. P. Seib, A. T. Jones, R. Duncan, J. Controlled Release 2007, 117, 291.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFCgtLs%3D&md5=1a3b618f0bc4775ac588bfaedabb21dcCAS |
[10] K. M. Kitchens, A. B. Foraker, R. B. Kolhatkar, P. W. Swaan, H. Ghandehari, Pharm. Res. 2007, 24, 2138.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2msbzJ&md5=a19f6fd67b7c00f664d71667fe9235cfCAS | 17701324PubMed |
[11] J. Dennig, Top. Curr. Chem. 2003, 228, 227.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotF2ks70%3D&md5=9285570b12eed966a63aa57b83b3a47cCAS | 21132487PubMed |
[12] A. Kichler, C. Leborgne, E. Coeytaux, O. Danos, J. Gene Med. 2001, 3, 135.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvkslGksQ%3D%3D&md5=28684660d87a79050b2eaf6ff4f94b1bCAS | 11318112PubMed |
[13] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 4th edn 2002 (Garland Science Publishing: New York).
[14] J. H. Lee, K. E. Cha, M. S. Kim, H. W. Hong, D. J. Chung, G. Ryu, H. Myung, Toxicol. Lett. 2009, 190, 202.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFSnsLrJ&md5=c0204cb7c47f2f373224a03fcf3f7dccCAS | 19643170PubMed |
[15] S. Ohkuma, B. Poole, Proc. Natl. Acad. Sci. USA 1978, 75, 3327.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXlvFegsbY%3D&md5=6767fa93f34b3852b4bf6d5fe62cd83aCAS |
[16] N. Malik, R. Wiwattanapatapee, R. Klopsch, K. Lorenz, H. Frey, J. W. Weener, E. W. Meijer, W. Paulus, R. Duncan, J. Controlled Release 2000, 65, 133.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtl2qs7o%3D&md5=00db7a3ad81df9c8f671265a81a182deCAS |
[17] B. M. Myers, P. S. Tietz, J. E. Tarara, N. F. LaRusso, Hepatology 1995, 22, 1519.
| 1:CAS:528:DyaK28XjvVOl&md5=3bd4f3c06a26f05cfe6eb051676e0e9bCAS | 7590671PubMed |
[18] N. D. Sonawane, F. C. Szoka, N. D. Sonawane, F. C. Szoka, J. Biol. Chem. 2003, 278, 44826.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXoslWlsbw%3D&md5=eb019a9916894de90e13686aea4b8547CAS | 12944394PubMed |
[19] P. Fernando, C. Bensimon, A. Smith, L. Wei, S. Moreau, Y. Duan, R. G. Wells, T. Ruddy, J. Nucl. Med. 2010, 51, 392.
[20] S. M. Khan, R. M. Smigrodzki, R. H. Swerdlow, Am. J. Physiol. Cell Physiol. 2007, 292, C658.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjt1Gmtb8%3D&md5=aa680e82c7743b3c070263c42d6f421aCAS | 16899549PubMed |
[21] M. J. Shieh, C. L. Peng, P. J. Lou, C. H. Chiu, T. Y. Tsai, C. Y. Hsu, C. Y. Yeh, P. S. Lai, J. Controlled Release 2008, 129, 200.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFOmsro%3D&md5=8fbe18d2c3257cb3d893e1e6b591037eCAS |
[22] M. Hussain, M. Shchepinov, M. Sohail, I. F. Benter, A. J. Hollins, E. M. Southern, S. Akhtar, J. Controlled Release 2004, 99, 139.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1Kjt7g%3D&md5=7c18c40a88fa0eaf77a725b77fca1e03CAS |
[23] C. Goncalves, E. Mennesson, R. Fuchs, J. P. Gorvel, P. Midoux, C. Pichon, Mol. Ther. 2004, 10, 373.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1Cmsbs%3D&md5=66c48e8c3c18ec160a5c4186143f1c5cCAS | 15294184PubMed |
[24] N. Bayer, D. Schober, E. Prchla, R. F. Murphy, D. Blaas, R. Fuchs, J. Virol. 1998, 72, 9645.
| 1:CAS:528:DyaK1cXnsF2nsb8%3D&md5=550339367c56549a893d7f701f9b7735CAS | 9811698PubMed |
[25] D. Tondera, A. Santel, R. Schwarzer, S. Dames, K. Giese, A. Klippel, J. Kaufmann, J. Biol. Chem. 2004, 279, 31544.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslOrsbs%3D&md5=91a79b9185c679e39489e706c3c15f3dCAS | 15155745PubMed |