Investigations into Competitive Cycloaddition/Cyclization or Elimination from 1,1-Dimethyl-propargylcarbamates of Anilines
Régis Delatouche A , Aurélien Lesage A , Floraine Collette B , Valérie Héroguez B and Philippe Bertrand A CA Laboratoire Synthèse et Réactivité des Substances Naturelles, Unité Mixte de Recherche, Centre National de la Recherche Scientifique (UMR CNRS) 6514,40 Avenue du Recteur Pineau, 86022, Poitiers cedex, France.
B Laboratoire de Chimie des Polymères Organiques, UMR CNRS 5629, 16 Avenue Pey Berland, 33607, Pessac cedex, France.
C Corresponding author. Email: philippe.bertrand@univ-poitiers.fr
Australian Journal of Chemistry 64(2) 166-173 https://doi.org/10.1071/CH10344
Submitted: 16 September 2010 Accepted: 18 October 2010 Published: 15 February 2011
Abstract
The copper-catalyzed reaction of 1,1-dimethyl-O-propargyl aniline carbamates was studied and revealed the unexpected formation of oxazolidin-2-ones and alkylamines. An in-depth study of the reaction conditions showed that the formation of these products was highly dependent on the solvent, copper catalyst and aniline substituents. The reaction can be oriented towards oxazolidinones in pyridine and alkylamines in ethanol, whereas cycloaddition can be achieved in dry tetrahydrofuran.
References
[1] N. R. Easton, D. R. Cassady, R. D. Dillard, J. Org. Chem. 1962, 27, 2746.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XksFGru7Y%3D&md5=b5eaba2f048edaeffeaf80b7545f788eCAS |
[2] R. V. Ohri, A. T. Radosevich, K. J. Hrovat, C. Musich, D. Huang, T. R. Holman, F. D. Toste, Org. Lett. 2005, 7, 2501.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktVajtLk%3D&md5=f2b72487fe589130038b0289220b0529CAS | 15932233PubMed |
[3] D. Grée, R. Grée, Tetrahedron Lett. 2007, 48, 5435.
| Crossref | GoogleScholarGoogle Scholar |
[4] R. D. Dillard, G. Poore, D. R. Cassady, N. R. Easton, J. Med. Chem. 1967, 10, 40.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF2s3mtleluw%3D%3D&md5=2bd816b436c0db1550e491a015de107aCAS | 5233161PubMed |
[5] P. J. Crowley, S. E. Russell, L. G. Reynolds, Tetrahedron 2006, 62, 8966.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotlSju7o%3D&md5=6f5e83c57fc80c1a8dfdc941d5071714CAS |
[6] R. Newton, G. P. Savage, Aust. J. Chem. 2008, 61, 432.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlGjs70%3D&md5=451df2438bb7816f2ab45872c97d9bbdCAS |
[7] R. Ramesh, R. G. Bhat, S. Chandrasekaran, J. Org. Chem. 2005, 70, 837.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitlGnsg%3D%3D&md5=9f6fd70a74e54947f3ce120d6ea6ff23CAS | 15675840PubMed |
[8] Y. Imada, M. Yuasa, I. Nakamura, S. I. Murahashi, J. Org. Chem. 1994, 59, 2282.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivFyjsrk%3D&md5=c10bc0e0f6234b9d7134320352619341CAS |
[9] Z-Q. Xu, R. V. Joshi, J. Zemlicka, Tetrahedron 1995, 51, 67.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjt1els7g%3D&md5=602c3ba5c10078b9dc4b3ef767f35d97CAS |
[10] G. Hattori, A. Yoshida, Y. Miyake, Y. Nishibayashi, J. Org. Chem. 2009, 74, 7603.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFCjsr4%3D&md5=1ba365cbb951ca0b189010ab7fdf19a8CAS | 19575533PubMed |
[11] M. Meldal, C. W. Tornøe, Chem. Rev. 2008, 108, 2952.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1yhurk%3D&md5=f39fbe60a8f73dd67d3770168745ba84CAS | 18698735PubMed |
[12] V. Aucagne, A. D. Leigh, Org. Lett. 2006, 8, 4505.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFahtr0%3D&md5=73a0d112ac7d5a9eddbed2d159cfa90bCAS | 16986936PubMed |
[13] D. A. Ossipov, J. Hilborn, Macromolecules 2006, 39, 1709.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOqtrs%3D&md5=37b08012c26a8d1f975d7e8399af29feCAS |
[14] W. J. L. Wood, A. W. Patterson, H. Tsuruoka, R. K. Jain, J. A. Ellman, J. Am. Chem. Soc. 2005, 127, 15521.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtV2nu77O&md5=72debba1d801a274b0ced534487b9011CAS | 16262416PubMed |
[15] N. Sewald, K. Burger, Liebigs Ann. Chem. 1992, 1992, 947.
| Crossref | GoogleScholarGoogle Scholar |
[16] P. Bertrand, J. P. Gesson, J. Org. Chem. 2007, 72, 3596.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVaitrk%3D&md5=a53077993a910da3842317e5fbdf5592CAS | 17385923PubMed |
[17] T. Francis, M. P. Thorne, Can. J. Chem. 1976, 54, 24.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XhvVSis70%3D&md5=45320b30bce2ac698b48b05c8dc92208CAS |
[18] F. D. Bellamy, K. Ou, Tetrahedron Lett. 1984, 25, 839.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXlslSrsro%3D&md5=360bd1f93ec9b11884ef0ab547dfbae5CAS |
[19] C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhs1ehsLo%3D&md5=2001bcbad8b9872a190e08d2f4b11aa0CAS |
[20] B. Ringdahl, Tetrahedron 1979, 35, 2413.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXksVGgsb4%3D&md5=70c2cb5c6271d9924f563099a6ed0739CAS |
[21] P. Ooms, K. Lürssen, H.-J. Santel, R. R. Schmidt, Eeuropean Patent 0 484 776 A1 1991.
[22] J. Fournier, C. Bruneau, P. H. Dixneuf, Tetrahedron Lett. 1990, 31, 1721.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkslynur8%3D&md5=9c9125f1187e2b8cf2e135c815a848a9CAS |
[23] N. R. Easton, D. R. Cassady, R. D. Dillard, J. Org. Chem. 1962, 27, 2927.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38Xks12hsrY%3D&md5=b2cb5a1c5b8c41d0b030cbdd1118fa37CAS |
[24] N. Shachat, J. J. Bagnell, J. Org. Chem. 1963, 28, 991.
| Crossref | GoogleScholarGoogle Scholar |
[25] P. J. Stoffel, A. J. Speziale, J. Org. Chem. 1963, 28, 2814.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXks12isrk%3D&md5=68d7eb6c43e1c41984ffb62d18231394CAS |
[26] R. Ramesh, Y. Chandrasekaran, R. Megha, S. Chandrasekaran, Tetrahedron 2007, 63, 9153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos1eit7k%3D&md5=d7e3f04cb22aefddb3bf9eb144d578adCAS |
[27] R. Robles-Machín, J. Adrio, J. C. Carretero, J. Org. Chem. 2006, 71, 5023.
| Crossref | GoogleScholarGoogle Scholar | 16776540PubMed |
[28] (a) Y. Gu, Q. Zhang, Z. Duan, J. Zhang, S. Zhang, Y. Deng, J. Org. Chem. 2005, 70, 7376.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXns1ais7w%3D&md5=8e583080cbc667ccd887f977b7a7c510CAS | 16122262PubMed |
(b) Q. Zhang, F. Shi, Y. Gu, J. Yang, Y. Deng, Tet. Lett. 2005, 46, 5907.
| Crossref | GoogleScholarGoogle Scholar |
[29] M. Kimura, S. Kure, Z. Yoshida, S. Tanaka, K. Fugami, Y. Tamaru, Tetrahedron Lett. 1990, 31, 4887.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmtlWht7w%3D&md5=32408795ab95ed9e292111541bc74d3dCAS |
[30] Y. Tamaru, M. Kimura, S. Tanaka, S. Kure, Z. Yoshida, Bull. Chem. Soc. Jpn. 1994, 67, 2838.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhsVaqu74%3D&md5=ed29f829afa3fca0b5c9d394df2be2b8CAS |
[31] At the AM1 level, with chem3D program facilities.
[32] B. Liang, J. Liu, Y.-X. Gao, K. Wongkhan, D.-X. Shu, Y. Lan, A. Li, A. S. Batsanov, J. A. H. Howard, T. B. Marder, J.-H. Chen, Z. Yang, Organometallics 2007, 26, 4756.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovVOns7g%3D&md5=5179dd1e5e714bd0e8dbb68a328a79eeCAS |
[33] O. W. Gooding, C. C. Beard, D. Y. Jackson, D. L. Wren, G. F. Cooper, J. Org. Chem. 1991, 56, 1083.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtVWnu7c%3D&md5=47c91c69a062eb8a2e93d79096beef09CAS |
[34] H. Deng, P. Kebarle, J. Am. Chem. Soc. 1998, 120, 2925.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXis12itrw%3D&md5=acd853735296324c7993166d198ed01dCAS |
[35] C. Girard, E. Önen, M. Aufort, S. Beauvire, E. Samson, J. Herscovici, Org. Lett. 2006, 8, 1689.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivVelsrc%3D&md5=14474ade4cab06b2505be0ab5b8b6e2cCAS | 16597142PubMed |
[36] S. Ritter, Y. Horino, J. Lex, H. G. Schmalz, Synlett 2006, 19, 3309.
[37] E. F. da Silva, H. F. Svendsen, Ind. Eng. Chem. Res. 2006, 45, 2497.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmt1Wkt70%3D&md5=6e6ad900ff759bf2ffc7a77b615acc88CAS |