Ion Mobility Mass Spectrometry Studies of the Inhibition of Alpha Synuclein Amyloid Fibril Formation by (–)-Epigallocatechin-3-Gallate
Yanqin Liu A , Lam H. Ho A , John. A. Carver A and Tara L. Pukala A BA School of Chemistry and Physics, The University of Adelaide, Adelaide, SA 5005, Australia.
B Corresponding author. Email: tara.pukala@adelaide.edu.au
Australian Journal of Chemistry 64(1) 36-40 https://doi.org/10.1071/CH10334
Submitted: 10 September 2010 Accepted: 10 November 2010 Published: 14 January 2011
Abstract
Ion mobility-mass spectrometry (IM-MS) is emerging as an important biophysical technique for the structural analysis of proteins and their assemblies, in particular for structurally heterogeneous systems such as those on the protein misfolding and aggregation pathway. Using IM-MS we have monitored amyloid fibril formation of A53T α-synuclein, a mutant synuclein protein associated with Parkinson’s disease, and identified that a conformational change towards a more compact structure occurs during the initial stages of aggregation. Binding of A53T α-synuclein to a flavenoid based amyloid fibril inhibitor, (–)-epigallocatechin-3-gallate, has been observed with a 1:1 stoichiometry. By analysis of ion collision cross-sections, we show epigallocatechin gallate binding prevents protein conformational change, and in turn decreases the formation of fibrillar aggregates.
References
[1] B. T. Ruotolo, J. L. Benesch, A. M. Sandercock, S. J. Hyung, C. V. Robinson, Nat. Protoc. 2008, 3, 1139.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFakurc%3D&md5=1724286c30b25e2c37840137f87615c0CAS | 18600219PubMed |
[2] B. C. Bohrer, S. I. Merenbloom, S. L. Koeniger, A. E. Hilderbrand, D. E. Clemmer, Annu. Rev. Anal. Chem. 2008, 1, 293.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFygsL%2FJ&md5=50634d6e9cf2dd9cf0cac34fa8192c4dCAS |
[3] A. B. Kanu, P. Dwivedi, M. Tam, L. Matz, H. H. Hill, J. Mass Spectrom. 2008, 43, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFKntbk%3D&md5=d0731448f7ad361e013eb2f7ac53d24aCAS | 18200615PubMed |
[4] J. C. Sacchettini, J. W. Kelly, Nat. Rev. Drug Discov. 2002, 1, 267.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVGmsLc%3D&md5=a25a8a836c4d61e88453b63e005264acCAS | 12120278PubMed |
[5] F. Chiti, C. M. Dobson, Annu. Rev. Biochem. 2006, 75, 333.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVKhs70%3D&md5=becbe007bb8fb929d31f68a645c64954CAS | 16756495PubMed |
[6] J. M. Gruschus, Amyloid 2008, 15, 160.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1KntLrF&md5=1719876e2d74e01c6050a0cc35c99c45CAS | 18925454PubMed |
[7] R. Kayed, E. Head, J. L. Thompson, T. M. McIntire, S. C. Milton, C. W. Cotman, C. G. Glabe, Science 2003, 300, 486.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFyms7k%3D&md5=817a2c572beaec95f5c8815ea5e11c2aCAS | 12702875PubMed |
[8] D. B. Teplow, N. D. Lazo, G. Bitan, S. Bernstein, T. Wyttenbach, M. T. Bowers, A. Baumketner, J.-E. Shea, B. Urbanc, L. Cruz, J. Borreguero, H. E. Stanley, Acc. Chem. Res. 2006, 39, 635.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFahsbw%3D&md5=76e0f81d68a6900b52ae49771c0b1f20CAS | 16981680PubMed |
[9] D. P. Smith, K. Giles, R. H. Bateman, S. E. Radford, A. E. Ashcroft, J. Am. Soc. Mass Spectrom. 2007, 18, 2180.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlynsb%2FJ&md5=aa884976fb57cc1134332839660036a2CAS | 17964800PubMed |
[10] K. A. Conway, J. D. Harper, P. T. Lansbury, Nat. Med. 1998, 4, 1318.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlakur0%3D&md5=ae2cc0ab955d25b07f6be98750915bb6CAS | 9809558PubMed |
[11] D. E. Ehrnhoefer, J. Bieschke, A. Boeddrich, M. Herbst, L. Masino, R. Lurz, S. Engemann, A. Pastore, E. E. Wanker, Nat. Struct. Mol. Biol. 2008, 15, 558.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmslWgsbg%3D&md5=39be7363b3076f67f65cd51614d25960CAS | 18511942PubMed |
[12] D. E. Ehrnhoefer, M. Duennwald, P. Markovic, J. L. Wacker, S. Engemann, M. Roark, J. Legleiter, J. L. Marsh, L. M. Thompson, S. Lindquist, P. J. Muchowski, E. E. Wanker, Hum. Mol. Genet. 2006, 15, 2743.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1GnurY%3D&md5=ce192df49750ecccdc018f2d4ede3920CAS | 16893904PubMed |
[13] S. A. Hudson, H. Ecroyd, F. C. Dehle, I. F. Musgrave, J. A. Carver, J. Mol. Biol. 2009, 392, 689.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2ku7rO&md5=00d071a74074814094cf3690fe8589dcCAS | 19616561PubMed |
[14] U. A. Mirza, S. L. Cohen, B. T. Chait, Anal. Chem. 1993, 65, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXjt1al&md5=6534c3893ddd1b60d26be52b547b9346CAS | 8380538PubMed |
[15] I. A. Kaltashov, R. R. Abzalimov, J. Am. Soc. Mass Spectrom. 2008, 19, 1239.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVyisb7N&md5=753fa32fe3b657c8eaa99c733594c644CAS | 18602274PubMed |
[16] I. A. Kaltashov, A. Mohimen, Anal. Chem. 2005, 77, 5370.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1WqsLo%3D&md5=3cb505f34fa6226b4d60963208ef6662CAS | 16097782PubMed |
[17] L. Konermann, D. J. Douglas, J. Am. Soc. Mass Spectrom. 1998, 9, 1248.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnslGms7o%3D&md5=fda0e5fa11192bbc595b5d39189ac323CAS | 9835071PubMed |
[18] A. Santner, V. N. Uversky, Metallomics 2010, 2, 378.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVGksL4%3D&md5=1aaf8f5ebe0def8d73db5b679ec9b056CAS | 21072383PubMed |
[19] Clemmer D. E. , Clemmer collision cross-section database. Available online at: http://www.indiana.edu/~clemmer/ [accessed 8 November 2010].
[20] S. L. Bernstein, D. Liu, T. Wyttenbach, M. T. Bowers, J. C. Lee, H. B. Gray, J. R. Winkler, J. Am. Soc. Mass Spectrom. 2004, 15, 1435.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotFGlsL0%3D&md5=eab783be915a1d7270da9240c1455334CAS | 15465356PubMed |
[21] V. N. Uversky, J. Li, A. L. Fink, J. Biol. Chem. 2001, 276, 10737.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFCqtLs%3D&md5=2b35e5a1461062e2e201718689a8d205CAS | 11152691PubMed |
[22] P. H. Weinreb, W. Zhen, A. W. Poon, K. A. Conway, P. T. Lansbury, Biochemistry 1996, 35, 13709.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtVOls7s%3D&md5=707dce8c43369934077abcaf4cb7bd86CAS | 8901511PubMed |
[23] C. O. Fernández, W. Hoyer, M. Zweckstetter, E. A. Jares-Erijman, V. Subramaniam, C. Griesinger, T. M. Jovin, EMBO J. 2004, 23, 2039.
| Crossref | GoogleScholarGoogle Scholar | 15103328PubMed |
[24] J. Goers, V. N. Uversky, A. L. Fink, Protein Sci. 2003, 12, 702.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVeksbs%3D&md5=18a4eb907a19976cd8fe6cbe5cbede5eCAS | 12649428PubMed |
[25] A. Binolfi, R. M. Rasia, C. W. Bertoncini, M. Ceolin, M. Zweckstetter, C. Griesinger, T. M. Jovin, C. O. Fernandez, J. Am. Chem. Soc. 2006, 128, 9893.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFaqtbo%3D&md5=63f35b4bf1f6bf1cd031cf1a3e045b19CAS | 16866548PubMed |
[26] V. N. Uversky, J. Li, K. Bower, A. L. Fink, Neurotoxicology 2002, 23, 527.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvVGrtLk%3D&md5=aa688b3e04ba33ab47899b5a715f6f56CAS | 12428725PubMed |
[27] M. Grabenauer, S. L. Bernstein, J. C. Lee, T. Wyttenbach, N. F. Dupuis, H. B. Gray, J. R. Winkler, M. T. Bowers, J. Phys. Chem. B 2008, 112, 11147.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1Citbs%3D&md5=d6c4091bf50d6a80114ed6e63579ec58CAS | 18693700PubMed |
[28] B. T. Ruotolo, K. Giles, I. Campuzano, A. M. Sandercock, R. H. Bateman, C. V. Robinson, Science 2005, 310, 1658.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSntLfE&md5=d0713cebf59260735588d7daaa74b65dCAS | 16293722PubMed |
[29] C. S. Hoaglund-Hyzer, A. E. Counterman, D. E. Clemmer, Chem. Rev. 1999, 99, 3037.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtVOht7c%3D&md5=ba6ecb06fc1e02595b71b3b379fb130eCAS | 11749510PubMed |
[30] C. A. Scarff, K. Thalassinos, G. R. Hilton, J. H. Scrivens, Rapid Commun. Mass Spectrom. 2008, 22, 3297.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtleiu73F&md5=03c52a499e054bdd42eda2aea38d4664CAS | 18816489PubMed |
[31] T. Wyttenbach, M. T. Bowers, Annu. Rev. Phys. Chem. 2007, 58, 511.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslSit7s%3D&md5=0b900de3504709dc66d46efb859726eeCAS | 17129173PubMed |
[32] M. J. Volles, P. T. Lansbury, J. Mol. Biol. 2007, 366, 1510.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1ClsL4%3D&md5=f8834274c5c1b73fdce601a98ef659baCAS | 17222866PubMed |
[33] J. A. Carver, P. J. Duggan, H. Ecroyd, Y. Liu, A. G. Meyer, C. E. Tranberg, Bioorg. Med. Chem. 2010, 18, 222.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFykurrE&md5=bbfa0650b00572852845088eec32221eCAS | 19931462PubMed |
[34] H. Hernández, C. V. Robinson, Nat. Protoc. 2007, 2, 715.
| Crossref | GoogleScholarGoogle Scholar | 17406634PubMed |