Crystal Structures, Antioxidation, and DNA Binding Properties of SmIII Complexes
Yongchun Liu A B , Zhengyin Yang A C , Kejun Zhang B , Yun Wu B , Jihua Zhu B and Tianlin Zhou BA College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000 Lanzhou, China.
B College of Chemistry and Chemical Engineering, Key Laboratory of Longdong Biological Resources in Gansu Province, Longdong University, 745000 Qingyang, Gansu, China.
C Corresponding author. Email: yangzy@lzu.edu.cn
Australian Journal of Chemistry 64(3) 345-354 https://doi.org/10.1071/CH10302
Submitted: 12 August 2010 Accepted: 7 February 2011 Published: 11 March 2011
Abstract
The dinuclear SmIII complexes with 1:1 metal to ligand stoichiometry were prepared from Sm(NO3)3·6H2O and three anionic tetradentate Schiff-base ligands derived from 8-hydroxyquinoline-2-carboxyaldehyde with benzoylhydrazine, 2-hydroxybenzoylhydrazine, and isonicotinylhydrazine, respectively. All the ligands and complexes can bind strongly to calf thymus DNA through intercalation with the binding constants at 105–106 M–1, but complexes present stronger affinities to DNA than ligands. All the ligands and complexes have strong abilities of antioxidation, but complexes and ligands containing an active phenolic hydroxy group show stronger scavenging effects on hydroxyl radical, and SmIII complex containing N-heteroaromatic substituent shows stronger scavenging effects for superoxide radical.
References
[1] (a) L. H. Schmidt, Annu. Rev. Microbiol. 1969, 23, 427.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXitVWkug%3D%3D&md5=d0d4495dc36e381eee18a7e89276b4b3CAS | 4901983PubMed |
(b) A. A. El-Asmy, A. Z. El-Sonbati, A. A. Ba-Issa, M. Mounir, Transition Met. Chem. 1990, 15, 222.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) D. Parker, R. S. Dickins, H. Puschmann, C. Crossland, J. A. K. Howard, Chem. Rev. 2002, 102, 1977.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjslens7c%3D&md5=02aab6dcf3839efb477d56c832594459CAS | 12059260PubMed |
(b) M. Albrecht, O. Osetska, R. Fröhliich, Dalton Trans. 2005, 23, 3757.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. B. Hunter, W. Walker, Nature 1956, 178, 47.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. M. Kramsch, A. J. Aspen, L. J. Rozler, Science 1981, 213, 1511.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) E. M. Hodnett, P. D. Mooney, J. Med. Chem. 1970, 13, 786.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXks1Cmtb0%3D&md5=b1249cb0af5609ccafa1c5d5e826c69eCAS | 5452461PubMed |
(b) E. M. Hodnett, W. J. Dunn, J. Med. Chem. 1972, 15, 339.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) Y. B. Zeng, N. Yang, W. S. Liu, N. Tang, J. Inorg. Biochem. 2003, 97, 258.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVKltLY%3D&md5=83c521ffccf960c900cfdc96392c0c0aCAS | 14511888PubMed |
(b) A. M. Pyle, T. Morii, J. K. Barton, J. Am. Chem. Soc. 1990, 112, 9432.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. K. Barton, J. M. Goldberg, C. V. Kumar, N. J. Turro, J. Am. Chem. Soc. 1986, 108, 2081.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) S. Mahadevan, M. Palaniandavar, Inorg. Chim. Acre 1997, 254, 291.
| Crossref | GoogleScholarGoogle Scholar |
(b) S. J. Lippard, Acc. Chem. Res. 1978, 11, 211.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. M. Hecht, Acc. Chem. Res. 1986, 19, 383.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) N. Grover, N. Gupta, H. H. Thorp, J. Am. Chem. Soc. 1992, 114, 3390.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhvV2rtLc%3D&md5=1fc34ad26f9a998c76211d84921addb1CAS |
(b) L. J. Govenlock, C. E. Mathieu, C. L. Maupin, D. Parker, J. P. Riehl, G. Siligardi, J. A. G. Williams, Chem. Commun. 1999, 17, 1699.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) B. N. Ames, M. K. Shigenaga, T. M. Hagen, Proc. Natl. Acad. Sci. USA 1993, 90, 7915.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmtVSksL4%3D&md5=e3c3eef7e9eb6842169193f3b001959eCAS |
(b) A. A. Horton, S. Fairhurst, Crit. Rev. Toxicol. 1987, 18, 27.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. L. Wang, Z. Y. Yang, B. D. Wang, Transition Met. Chem. 2006, 31, 470.
| Crossref | GoogleScholarGoogle Scholar |
[8] S. F. Lo, V. Mulabagal, C. L. Chen, C. L. Kuo, H. S. Tsay, J. Agric. Food Chem. 2004, 52, 6916.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXosVOkt78%3D&md5=7369bd8d34f963d3777ee51439a29b4aCAS | 15537296PubMed |
[9] (a) S. Y. Chiang, J. Welch, F. J. Rauscher, T. A. Beerman, Biochemistry 1994, 33, 7033.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXksV2ks74%3D&md5=29f6aac8397b9fa5892dcac931ed681bCAS | 7516181PubMed |
(b) J. M. Woynarowski, M. Mchugh, R. D. Sigmund, T. A. Beerman, Mol. Pharmacol. 1989, 35, 177.
(c) A. Y. Chen, C. Yu, B. Gatto, L. F. Liu, Proc. Natl. Acad. Sci. USA 1993, 90, 8131.
| Crossref | GoogleScholarGoogle Scholar |
[10] Y. C. Liu, Z. Y. Yang, J. Inorg. Biochem. 2009, 103, 1014.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvVWlsbk%3D&md5=6f1956c671fe7b2a5519f543ce22300eCAS | 19481266PubMed |
[11] W. J. Geary, Coord. Chem. Rev. 1971, 7, 81.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXlsVCgsrg%3D&md5=121be1fa67054be20e378f7f0f038b41CAS |
[12] (a) M. M. Moawad, W. G. Hanna, J. Coord. Chem. 2002, 55, 439.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1Wjt7s%3D&md5=a8d388d2be373f4aab0ed498370dbd2bCAS |
(b) T. M. A. Ismail, J. Coord. Chem. 2005, 58, 141.
| Crossref | GoogleScholarGoogle Scholar |
[13] J. M. Ou-Yang, J. Inorg. Chem 1997, 13, 315 (in Chinese).
[14] (a) D. Suh, J. B. Chaires, Bioorg. Med. Chem. 1995, 3, 723.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvFWntLk%3D&md5=4001cbb342e1e9954699494f8963e015CAS | 7582950PubMed |
(b) R. Palchaudhuri, P. J. Hergenrother, Curr. Opin. Biotechnol. 2007, 18, 497.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) S. Satyanarayana, J. C. Dabrowiak, J. B. Chaires, Biochemistry 1992, 31, 9319.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xls1Kjtbc%3D&md5=a90b3c4331849d865cab042160536ecfCAS | 1390718PubMed |
(b) B. D. Wang, Z. Y. Yang, P. Crewdson, D. Q. Wang, J. Inorg. Biochem. 2007, 101, 1492.
| Crossref | GoogleScholarGoogle Scholar |
[16] R. D. Snyder, Mutat. Res. 2007, 623, 72.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWmsbzE&md5=4422e7805bb6b9d6f0898074a31dee71CAS | 17434187PubMed |
[17] (a) J. K. Barton, A. T. Danishefsky, J. M. Goldberg, J. Am. Chem. Soc. 1984, 106, 2172.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhtlCntL0%3D&md5=4934bcad647c12080559e512ff96854bCAS |
(b) H. L. Lu, J. J. Liang, Z. Z. Zeng, P. X. Xi, X. H. Liu, F. J. Chen, Z. H. Xu, Transition Met. Chem. 2007, 32, 564.
| Crossref | GoogleScholarGoogle Scholar |
[18] (a) V. G. Vaidyanathan, B. U. Nair, Eur. J. Inorg. Chem. 2004, 1840.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVGgt7s%3D&md5=7df829676052e85b072cedd6b4d65708CAS |
(b) P. X. Xi, Z. H. Xu, X. H. Liu, F. J. Chen, L. Huang, Z. Z. Zeng, Chem. Pharm. Bull. 2008, 56, 541.
| Crossref | GoogleScholarGoogle Scholar |
[19] Z. L. Li, J. H. Chen, K. C. Zhang, M. L. Li, R. Q. Yu, Sci. China Series B. Chem. 1991, 11, 1193 (in Chinese).
[20] (a) C. Behrens, N. Harrit, P. E. Nielsen, Bioconjug. Chem. 2001, 12, 1021.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvFGmtrs%3D&md5=0fd552c92d3be14f6619e9c560ad0007CAS | 11716695PubMed |
(b) S. Frau, J. Bernadou, B. Meunier, Bioconjug. Chem. 1997, 8, 222.
| Crossref | GoogleScholarGoogle Scholar |
[21] (a) D. S. Sigman, A. Mazumder, D. M. Perrin, Chem. Rev. 1993, 93, 2295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlvFyisrc%3D&md5=f7b5cf7e1745bde0e10440838aa5a08aCAS |
(b) Y. Wang, Z. Y. Yang, Q. Wang, Q. K. Cai, K. B. Yu, J. Organomet. Chem. 2005, 690, 4557.
| Crossref | GoogleScholarGoogle Scholar |
[22] J. Z. Wu, B. H. Ye, L. Wang, L. N. Ji, J. Y. Zhou, R. H. Li, Z. Y. Zhou, J. Chem. Soc., Dalton Trans. 1997, 8, 1395.
| Crossref | GoogleScholarGoogle Scholar |
[23] (a) Y. C. Liu, Z. Y. Yang, J. Du, X. J. Yao, R. X. Lei, X. D. Zheng, J. N. Liu, H. S. Hu, H. Li, Chem. Pharm. Bull. 2008, 56, 443.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlalsbs%3D&md5=e1cd639dbbb640c59767eb98dc64024fCAS | 18379088PubMed |
(b) Y. C. Liu, Z. Y. Yang, J. Du, X. J. Yao, R. X. Lei, X. D. Zheng, J. N. Liu, H. S. Hu, H. Li, Immunobiology 2008, 213, 651.
| Crossref | GoogleScholarGoogle Scholar |
[24] (a) L. A. Bagatolli, S. C. Kivatinitz, G. D. Fidelio, J. Pharm. Sci. 1996, 85, 1131.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlsVyhsro%3D&md5=d72428be264a01c7645e89daebcf3618CAS | 8897285PubMed |
(b) M. M. Yang, P. Yang, L. W. Zhang, Chin. Sci. Bull. 1994, 9, 31.
[25] A. Ayar, B. Mercimek, Process Biochem. 2006, 41, 1553.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVKgu7k%3D&md5=6dd6b668a7c24e60fa2cca999db4292fCAS |
[26] (a) L. M. Berezhkovskiy, I. V. Astafieva, C. Cardoso, Anal. Biochem. 2002, 308, 239.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xot12ksrw%3D&md5=f8e6ce136bbb6f9bc1d99c99dd1e4dd1CAS | 12419335PubMed |
(b) J. B. Chaires, N. Dattagupta, D. M. Crothers, Biochemistry 1982, 21, 3933.
| Crossref | GoogleScholarGoogle Scholar |
[27] J. D. McGhee, P. H. von Hippel, J. Mol. Biol. 1974, 86, 469.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXls1GitLY%3D&md5=0e5ccd96af02ae215bf660787751fea2CAS | 4416620PubMed |
[28] (a) M. Baldini, M. Belicchi-Ferrari, F. Bisceglie, G. Pelosi, S. Pinelli, P. Tarasconi, Inorg. Chem. 2003, 42, 2049.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1Sgt7s%3D&md5=9a5a4374c47e69cb041ece87452c16dfCAS | 12639140PubMed |
(b) Y. Wang, Z. Y. Yang, Z. N. Chen, Bioorg. Med. Chem. Lett. 2008, 18, 298.
| Crossref | GoogleScholarGoogle Scholar |
[29] J. I. Ueda, N. Saito, Y. Shimazu, T. Ozawa, Arch. Biochem. Biophys. 1996, 333, 377.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlslSiurk%3D&md5=7e3df2046c79b3d3625652a2803eb1f4CAS | 8809076PubMed |
[30] C. C. Winterbourn, Biochem. J. 1981, 198, 125.
| 1:CAS:528:DyaL3MXmtFKntro%3D&md5=445e988e997cdf5d7c4f523e23e62ad1CAS | 6275837PubMed |
[31] R. Xing, H. Yu, S. Liu, W. Zhang, Q. Zhang, Z. Li, P. Li, Bioorg. Med. Chem. 2005, 13, 1387.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFWlsA%3D%3D&md5=f596c9d450587f707e79fa2eed667854CAS | 15670946PubMed |
[32] F. Zsila, Z. Bikádi, M. Simonyi, Org. Biomol. Chem. 2004, 2, 2902.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlahu7w%3D&md5=9a39e081e748aae0ed6b386cba05b108CAS | 15480453PubMed |
[33] A. G. Krishna, D. V. Kumar, B. M. Khan, S. K. Rawal, K. N. Ganesh, Biochim. Biophys. Acta 1998, 1381, 104.
| 1:CAS:528:DyaK1cXjsVeitrw%3D&md5=9848a7a70f52da6be0003ebce744f37bCAS | 9659377PubMed |
[34] C. C. Winterbourn, Biochem. J. 1979, 182, 625.
| 1:CAS:528:DyaL3cXltlOmtw%3D%3D&md5=208b112039870cb353f602082c76d6f2CAS |
[35] Z. Y. Guo, R. Xing, S. Liu, H. H. Yu, P. B. Wang, C. P. Li, P. C. Li, Bioorg. Med. Chem. Lett. 2005, 15, 4600.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvVSrur0%3D&md5=0d80e8f778ac28b798aa2a99a5063386CAS | 16122924PubMed |
[36] G. M. Sheldrick, Acta Crystallogr. A 1990, 46, 467.
| Crossref | GoogleScholarGoogle Scholar |