Fluorescence Quenching of Quantum Dots by DNA Nucleotides and Amino Acids1
Daniel Siegberg A and Dirk-Peter Herten A BA Cellnetworks Cluster and Institute for Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 267, D-69120, Heidelberg, Germany.
B Corresponding author. Email: dirk-peter.herten@urz.uni-hd.de
Australian Journal of Chemistry 64(5) 512-516 https://doi.org/10.1071/CH10293
Submitted: 7 August 2010 Accepted: 31 October 2010 Published: 30 May 2011
Abstract
Quantum dots found widespread application in the biosciences as bright and highly photo-stable fluorescent probes, i.e. for single-particle tracking. In this work we used ensemble spectroscopy and single-molecule techniques to study the quenching of quantum dots by various biochemical compounds that are usually present in living cells and might thus influence the experiments. We found not only nucleotides such as cytosine, guanine, and thymine can significantly influence the fluorescence emission of CdSe and CdTe quantum dots, but also amino acids, like asparagine and tryptophan. Bulk studies on fluorescence quenching indicated a static quenching mechanism. Interestingly, we could also show by single-molecule fluorescence spectroscopy that quenching of the quantum dots can be irreversible, suggesting either a redox-reaction between quantum dot and quencher or strong binding of the quencher to the surface of the bio-conjugated quantum dots.
References
[1] A. P. Alivisatos, W. W. Gu, C. Larabell, Annu. Rev. Biomed. Eng. 2005, 7, 55.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXps12lt7c%3D&md5=dacdb3241e3e3b9e1ccd06a64df10bbaCAS | 16004566PubMed |
[2] X. H. Gao, L. L. Yang, J. A. Petros, F. F. Marshal, J. W. Simons, S. M. Nie, Curr. Opin. Biotechnol. 2005, 16, 63.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsFShsL4%3D&md5=7ed753a456099920b2ffe9f6d8d3186eCAS | 15722017PubMed |
[3] I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nat. Mater. 2005, 4, 435.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1Cit7k%3D&md5=3a55eb443c0a989d0049862257c15ad6CAS | 15928695PubMed |
[4] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, Science 2005, 307, 538.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmslOhtw%3D%3D&md5=be5fc27e060de79d88469c92ddadd0e3CAS | 15681376PubMed |
[5] E. A. Jares-Erijman, T. M. Jovin, Nat. Biotechnol. 2003, 21, 1387.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosFOksbo%3D&md5=17287a750da7b858899e3c429f68ef52CAS | 14595367PubMed |
[6] P. Mulvaney, L. M. Liz-Marzan, M. Giersig, T. Ung, J. Mater. Chem. 2000, 10, 1259.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtlyjtrg%3D&md5=a75746448834906f9226427505e9dcf2CAS |
[7] J. A. Kloepfer, S. E. Bradforth, J. L. Nadeau, J. Phys. Chem. B 2005, 109, 9996.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsVGgt78%3D&md5=1700ecf84a738186c4765b163a121f08CAS | 16852208PubMed |
[8] W. G. J. H. M. van Sark, P. L. T. M. Frederix, A. A. Bol, H. C. Gerritsen, A. Meijerink, ChemPhysChem 2002, 3, 871.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosVaksLw%3D&md5=1a5f16c246a7ed82a4308c16f28d7a8fCAS |
[9] M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, D. J. Nesbitt, J. Chem. Phys. 2000, 112, 3117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXptFWlsA%3D%3D&md5=b63a38ef24836a163c687780b1977f03CAS |
[10] S. Doose, H. Neuweiler, M. Sauer, ChemPhysChem 2009, 10, 1389.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVGhu7s%3D&md5=a619fda1453c07aeb07827057e421246CAS | 19475638PubMed |
[11] S. N. Sharma, Z. S. Pillai, P. V. Kamat, J. Phys. Chem. B 2003, 107, 10088.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsFamtrg%3D&md5=0b0a42b34dd1c106d3c8e16d30eace51CAS |
[12] K. A. Gattas-Asfura, R. M. Leblanc, Chem. Commun. 2003, 2684.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1ersr4%3D&md5=4d2d94f169afda4299bdeeee860fa2e5CAS |
[13] C. Landes, C. Burda, M. Braun, M. A. El-Sayed, J. Phys. Chem. B 2001, 105, 2981.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvFGru70%3D&md5=e47041c8c1ef1e713fc1eb594e612362CAS |
[14] C. Q. Dong, H. F. Qian, N. H. Fang, J. C. Ren, J. Phys. Chem. B 2006, 110, 11069.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVWhsLg%3D&md5=9433e5b223b738bca5fce7a87134e6a7CAS | 16771367PubMed |
[15] J. G. Liang, X. P. Ai, Z. K. He, D. W. Pang, Analyst 2004, 129, 619.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVahsbs%3D&md5=f83581ab155fe2910bf3c9410641f891CAS | 15213829PubMed |
[16] Z. Gueroui, A. Libchaber, Phys. Rev. Lett. 2004, 93, 166108.
| Crossref | GoogleScholarGoogle Scholar | 15525013PubMed |
[17] L. Dyadyusha, H. Yin, S. Jaiswal, T. Brown, J. J. Baumberg, F. P. Booy, T. Melvin, Chem. Commun. 2005, 3201.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlKhsb4%3D&md5=77bc415160fd3dae970572a6f79c95f8CAS |
[18] S. Hohng, T. Ha, ChemPhysChem 2005, 6, 956.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksFajsrY%3D&md5=2ef4b99ebfbb96656ece3856e30a3c12CAS | 15884082PubMed |
[19] J. A. Kloepfer, R. E. Mielke, J. L. Nadeau, Appl. Environ. Microbiol. 2005, 71, 2548.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFKmurg%3D&md5=8c5a13b96f2b49ff93f9f635a6e1d7edCAS | 15870345PubMed |
[20] A. Priyam, A. Chatterjee, S. K. Das, A. Saha, Chem. Commun. 2005, 4122.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntlejsLo%3D&md5=7ea5763c2834428afb35f6e5de361365CAS |
[21] D. Selmarten, M. Jones, G. Rumbles, P. Yu, J. Nedeljkovic, S. Shaheen, J. Phys. Chem. B 2005, 109, 15927.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFSrsLY%3D&md5=56ea0dbfef38e484618c55378ccd5aa2CAS | 16853021PubMed |
[22] C. Bullen, P. Mulvaney, Langmuir 2006, 22, 3007.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs1Cisr8%3D&md5=9a15e49934617a505e42d8a5f777079dCAS | 16548550PubMed |
[23] M. G. Sandros, V. Shete, D. E. Benson, Analyst 2006, 131, 229.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1WhtQ%3D%3D&md5=e07255b24eef3580fc4af56e79d66692CAS | 16440087PubMed |
[24] Y. Zhang, J. He, P. N. Wang, J. Y. Chen, Z. J. Lu, D. R. Lu, J. Guo, C. C. Wang, W. L. Yang, J. Am. Chem. Soc. 2006, 128, 13396.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvVChsLo%3D&md5=45362693cca5450302e9a961e799f613CAS | 17031951PubMed |
[25] V. Biju, Y. Makita, A. Sonoda, H. Yokoyama, Y. Baba, M. Ishikawa, J. Phys. Chem. B 2005, 109, 13899.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFCgu7k%3D&md5=fefaaaf292c5427f3c6f4a6d33cebd9eCAS | 16852744PubMed |
[26] M. Califano, A. Franceschetti, A. Zunger, Nano Lett. 2005, 5, 2360.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKhtbbJ&md5=a1fcf51ec281badd52e7bccd78e0340dCAS | 16351178PubMed |
[27] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn 2006 (Springer: Berlin).
[28] P. Tinnefeld, D. P. Herten, M. Sauer, J. Phys. Chem. A 2001, 105, 7989.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFygur0%3D&md5=682a89a557e987b708b8046729a5595fCAS |
[29] Z. Yu, L. Guo, H. Du, T. Krauss, J. Silcox, Nano Lett. 2005, 5, 565.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVCktb8%3D&md5=f54e3a64d7014f516a26e98747f9804dCAS | 15826088PubMed |
[30] C. Bullen, P. Mulvany, Langmuir 2006, 22, 3007.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs1Cisr8%3D&md5=9a15e49934617a505e42d8a5f777079dCAS | 16548550PubMed |
[31] U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, Nat. Methods 2008, 5, 763.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGgsbrM&md5=dcfa76003c77ac090b7154c8b1046cebCAS | 18756197PubMed |