Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Oxalate Bridged Copper Pyrazole Complex Templated Anderson-Evans Cluster Based Solids

Katikaneani Pavani A , Monika Singh A and Arunachalam Ramanan A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India.

B Corresponding author. Email: aramanan@chemistry.iitd.ac.in

Australian Journal of Chemistry 64(1) 68-76 https://doi.org/10.1071/CH10276
Submitted: 21 July 2010  Accepted: 23 November 2010   Published: 14 January 2011

Abstract

The synthesis of four new Anderson-Evans type cluster based solids was carried out from an aqueous solution containing sodium molybdate, chromium chloride, cupric chloride and pyrazole at room temperature: [{Cr3O(CH3COO)6(H2O)3}2{H7CrMo6O24}]·24H2O, 1; [{Cu2(ox)(pz)4}{H7CrMo6O24}]·11H2O, 3; [{Cu(pz)2(H2O)2}{Cu2(ox)(pz)4}{H5CrMo6O24}]·8H2O, 4; and [{Cu(pz)3Cl}{Cu2(ox)(pz)4}{H6CrMo6O24}]·8H2O, 5. In 1, the discrete Anderson-Evans cluster aggregates with trimeric chromium acetate cationic complex through supramolecular interactions. In 35, the Anderson-Evans cluster is covalently linked into a 1D chain through oxalate bridged copper pyrazole units. In 3, the chains are further stabilized by water oligomers. In 4 and 5, the chains are covalently linked into 2D sheets by different copper pyrazole complexes. The oxalate molecules in 35 are probably generated in situ in the reaction medium, through a reductive coupling of dissolved carbon dioxide assisted by copper pyrazole units.


References

[1]  (a) A. Müller, F. Peters, M. T. Pope, D. Gatteschi, Chem. Rev. 1998, 98, 239.
         | Crossref | GoogleScholarGoogle Scholar | 11851505PubMed |
      (b) De.-L. Long, E. Burkholder, L. Cronin, Chem. Soc. Rev. 2007, 36, 105.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. Sloan, Annu. Rep. Prog. Chem. Sect. A 1999, 95, 129.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) Y. Xu, Curr. Opin. Solid State Mater. Sci. 1999, 4, 133.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvFOktbo%3D&md5=0f10fe799b7358977de5ab9b3ee57f00CAS |
      (b) P. J. Hagrman, D. Hagrman, J. Zubieta, Angew. Chem. Int. Ed. 1999, 38, 2638.
         | Crossref | GoogleScholarGoogle Scholar |
      Hagrman  P. J., Hagrman  D., Zubieta  J., Polyoxometalate Chemistry 2001, p. 269 (Kluwer Academic Publishers: The Netherlands).

[3]  (a) M. Cindrić, Z. Veksli, B. Kamenar, Croat. Chem. Acta 2009, 82, 345.
      (b) T. Yamase, Mol. Eng. 1993, 3, 241.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) U. Kortz, A. Müller, J. V. Slageren, J. Schnacke, N. S. Dalal, M. Dressel, Coord. Chem. Rev. 2009, 253, 2315.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKgtrzE&md5=52f5400b565889f622fcd70094a64203CAS |
      (b) D. Schaming, C. Allain, R. Farha, M. Goldmann, S. Lobstein, A. Giraudeau, B. Hasenknopf, L. Ruhlmann, Langmuir 2010, 26, 5101.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) H. Abbas, A. L. Pickering, De.-L. Long, P. Kogerler, L. Cronin, Chemistry 2005, 11, 1071.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsVahtbk%3D&md5=287e80561a5bfdd7793730f7d628510dCAS | 15660354PubMed |
      (b) A. Michailovski, G. R. Patzke, Chemistry 2006, 12, 9122.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) J. S. Anderson, Nature 1937, 140, 850.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA1cXotlKr&md5=90fea44f013c4d1f601a798db28debdbCAS |
      (b) H. T. Evans Jr, J. Am. Chem. Soc. 1948, 70, 1291.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) H. An, Y. Li, D. Xiao, E. Wang, C. Sun, Cryst. Growth Des. 2006, 6, 1107.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtlSisb0%3D&md5=3d6a83638d27dbc530f49c9e11b862cfCAS |
      (b) H.-Y. Ma, L.-Z. Wu, H.-J. Pang, X. Meng, J. Peng, J. Mol. Struct. 2010, 967, 15.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P.-P. Zhang, J. Peng, A.-X. Tian, J.-Q. Sha, H.-J. Pang, Y. Chen, M. Zhu, Y.-H. Wang, J. Mol. Struct. 2009, 931, 50.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) H. An, T. Xu, C. Jia, H. Zheng, W. Mu, J. Mol. Struct. 2009, 933, 86.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) R.-G. Cao, S.-X. Liu, Y. Liu, Q. Tang, L. Wang, L.-H. Xie, Z.-M. Su, J. Solid State Chem. 2009, 182, 49.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  Y. Kera, T. Oonaka, K. Yamanaka, S. Hirayama, H. Kominami, Appl. Catal. A 2004, 276, 187.
         | 1:CAS:528:DC%2BD2cXovVyqtb0%3D&md5=6ae5bfc82716fee52c03679b4f25d976CAS |

[9]  (a) K. Pavani, S. E. Loftland, K. V. Ramanujachary, A. Ramanan, Eur. J. Inorg. Chem. 2007, 568.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVKrt7Y%3D&md5=af70c1cd5bb7152c9e120fede8f79b24CAS |
      (b) J. Thomas, A. Ramanan, Cryst. Growth Des. 2008, 8, 3390.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  I. D. Brown, D. Altermatt, Acta Crystallogr. B 1985, 41, 244.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  C. E. Anson, J. P. Bourke, R. D. Cannon, U. A. Jayasooriya, M. Molinier, A. K. Powell, Inorg. Chem. 1997, 36, 1265.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhs1Crtbg%3D&md5=ad69c491aab98f3a91327c861e84972dCAS | 11669698PubMed |

[12]  A. Perloff, Inorg. Chem. 1970, 9, 2228.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXltVejsbs%3D&md5=b41016fdd7dd873e667cb6212e452a17CAS |

[13]  P. A. Christensen, S. J. Higgins, J. Electroanal. Chem. 1995, 387, 127.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  R. Cao, S. Liu, L. Xie, Y. Pan, J. Cao, Y. Ren, L. Xu, Inorg. Chem. 2007, 46, 3541.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvVKgsLY%3D&md5=ccf31f2fdd16369ab16dd278a1d1b212CAS | 17408263PubMed |

[15]  S. Reinoso, P. Vitoria, J. M. Gutierrez-Zorrilla, L. Lezama, J. M. Madariaga, L. San Felices, A. Iturrospe, Inorg. Chem. 2007, 46, 4010.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvVOlsLc%3D&md5=09b1606c0059c145a4ad4945a2d6c9fbCAS | 17408264PubMed |

[16]  Y.-H. Xing, J. Han, B.-L. Zhang, X.-J. Zhang, Y.-H. Zhang, G.-H. Zhou, Acta Crystallogr. Sect. E Struct. Rep. Online 2006, 62, m3354.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  C. E. Anson, J. P. Bourke, R. D. Cannon, U. A. Jayasooriya, M. Molinier, A. K. Powell, Inorg. Chem. 1997, 36, 1265.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhs1Crtbg%3D&md5=ad69c491aab98f3a91327c861e84972dCAS | 11669698PubMed |

[18]  (a) M. Eshel, A. Bino, I. Felner, D. C. Johnston, M. Luban, L. L. Miller, Inorg. Chem. 2000, 39, 1376.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsFeltrk%3D&md5=1df024bbb0cb0e1ab5923ad47ff44952CAS | 12526439PubMed |
      (b) M. Eshel, A. Bino, Inorg. Chim. Acta 2002, 329, 45.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Eshel, A. Bino, Inorg. Chim. Acta 2001, 320, 127.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  (a) H. Liu, L. Xu, G.-G. Gao, F.-Y. Li, Y.-Y. Yang, Z.-K. Li, Y. Sun, J. Solid State Chem. 2007, 180, 1664.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFOit74%3D&md5=ceb4a885289cbb0a6dae8a5a9373cdbaCAS |
      (b) Z.-X. Du, J.-X. Li, J.-H. Qin, Z. Kristallogr., New Cryst. Struct. 2008, 223, 105.
      (c) I. Tsyba, B. B. Mui, R. Bau, R. Noguchi, K. Nomiya, Inorg. Chem. 2003, 42, 8028.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  T. Duraisamy, A. Ramanan, J. J. Vittal, Cryst. Eng. 2000, 3, 237.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1SltLw%3D&md5=4b0d552bc827690b58e88009beac95a1CAS |

[21]  L. Yu, S.-Z. Li, J.-P. Wang, Acta Crystallogr. Sect. E Struct. Rep. Online 2006, 62, i190.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  S. Upreti, A. Datta, A. Ramanan, Cryst. Growth Des. 2007, 7, 966.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlCmsbc%3D&md5=12a652df8e33b11c3f38a3debf2334a7CAS |

[23]  J. Thomas, M. Agarwal, A. Ramanan, N. Chernova, M. S. Whittingham, Cryst. Eng. Comm. 2009, 11, 625.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVyrtbs%3D&md5=5ce9f8b5c0f8f3a1e48b88922f5eef4eCAS |

[24]  (a) R. Angamuthu, P. Byers, M. Lutz, A. L. Spek, E. Bouwman, Science 2010, 327, 313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktlWnsg%3D%3D&md5=86f7142461866d83d9f19fc4d49e2738CAS | 20075248PubMed |
      (b) R. T. Stibrany, H. J. Schugar, J. A. Potenza, Acta Cryst. E 2005, 61, m1904.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. J. Farrugia, S. Lopinski, P. A. Lovatt, R. D. Peacock, Inorg. Chem. 2001, 40, 558.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  D. M. Y. Barrett Adams, I. A. Kahwa, J. T. Mague, New J. Chem. 1998, 22, 919.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvFyqtb8%3D&md5=32af42d4ac84445080a3934d30653f2dCAS |

[26]  (a) D. A. Morgenstern, R. E. Wittrig, P. E. Fanwick, C. P. Kubiak, J. Am. Chem. Soc. 1993, 115, 6470.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltlyktbg%3D&md5=cb746824628d229db91d1ef679a31d0bCAS |
      (b) W.-K. Wong, L.-L. Zhang, F. Xue, T. C. W. Mak, J. Chem. Soc., Dalton Trans. 2000, 14, 2245.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  (a) K. L. Ziegelgruber, K. E. Knope, M. Frisch, C. L. Cahill, J. Solid State Chem. 2008, 181, 373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKgtr0%3D&md5=6907594d0d785cde61bc9329a7daa40aCAS |
      (b) B. Baruah, V. O. Golub, C. J. O’Connor, A. Chakravorty, Eur. J. Inorg. Chem. 2003, 2003, 2299.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) O. R. Evans, W. Lin, Cryst. Growth Des. 2001, 1, 9.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  P. Orioli, B. Bruni, M. Di Vaira, L. Messori, F. Piccioli, Inorg. Chem. 2002, 41, 4312.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1Gitbc%3D&md5=4e8de5b0bd5c30ee2ee526746cd8b109CAS | 12184744PubMed |

[29]  (a) A. M. Thomas, G. C. Mandal, S. K. Tiwary, R. K. Rath, A. R. Chakravarty, J. Chem. Soc., Dalton Trans. 2000, 9, 1395.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) C. Ünaleroglu, B. Zumreoglu-Karan, Y. Zencir, T. Hokelek, Polyhedron 1997, 16, 2155.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  (a) P. Thuéry, Polyhedron 2007, 26, 101.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) Z.-B. Han, X.-N. Cheng, X.-F. Li, X.-M. Chen, Z. Anorg. Allg. Chem. 2005, 631, 937.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  (a) A. J. Belsky, P. G. Maiella, T. B. Brill, J. Phys. Chem. A 1999, 103, 4253.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXislyitrk%3D&md5=9e3f5335f496f758040593d5262d7a93CAS |
      (b) M. Frisch, C. L. Cahill, J. Solid State Chem. 2007, 180, 2597.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  (a) L. Hegedüs, H.-D. Foersterling, M. Wittmann, Z. Noszticzius, J. Phys. Chem. A 2000, 104, 9914.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) S. W. Lee, Bull. Korean Chem. Soc. 2006, 27, 1839.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  (a) B. Li, W. Gu, L.-Z. Zhang, J. Qu, Z.-P. Ma, X. Liu, D.-Z. Liao, Inorg. Chem. 2006, 45, 10425.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Knu7vM&md5=2c328cfeb7588a8d31e9c5e4266aeed4CAS | 17173391PubMed |
      (b) X. Li, R. Cao, D. Sun, Q. Shi, W. Bi, M. Hong, Inorg. Chem. Commun. 2003, 6, 815.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  (a) X. Li, V. L. Pecoraro, Inorg. Chem. 1989, 28, 3403.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlt1Gks74%3D&md5=7980b0a78aa86b914d754d73b6985ea4CAS |
      (b) J. Y. Lu, J. Macias, J. Lu, J. E. Cmaidalka, Cryst. Growth Des. 2002, 2, 485.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  (a) D. Min, S. W. Lee, Inorg. Chem. Commun. 2002, 5, 978.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVWmtLo%3D&md5=fc4d4259b42ac49c78a4df0cc212fc24CAS |
      (b) S. Neogi, G. Savitha, P. K. Bharadwaj, Inorg. Chem. 2004, 43, 3771.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  Tectons (the Greek word τεκτων for builder) are chemically reasonable molecules with specific geometry. Typical examples vary from simple molecules like H2O to robust ones such as metal complexes or even polyoxomolybdate clusters (refer text). While a tecton is obvious in a molecular solid, it needs to be inferred from a coordinate or covalent linkage.
      Nangia  A., Nomenclature in Crystal Engineering in Encyclopedia of Supramolecular Chemistry 2004 (CRC Press: United Kingdom).

[37]  M. Singh, J. Thomas, A. Ramanan, Aust. J. Chem. 2010, 63, 565.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFSgtbs%3D&md5=4a9ebe8e4f3b56cff3c113873695bc1aCAS |

[38]  M. Singh, S. E. Lofland, K. V. Ramanujachary, A. Ramanan, Cryst. Growth Des. 2010, 10, 5105.
         | 1:CAS:528:DC%2BC3cXhsVaju73N&md5=b215e04e20a27c0b26221a3940bc7f75CAS |

[39]  (a) G. M. Sheldrick, Acta Crystallogr. A 1990, 46, 467.
         | Crossref | GoogleScholarGoogle Scholar |
      Sheldrick  G. M., SHELXTL-NT2000, version 6.12, reference Manual, University of Göttingen, Germany.