Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Microwave-Assisted Chemistry: a Closer Look at Heating Efficiency

Richard Hoogenboom A B D , Tom F. A. Wilms A , Tina Erdmenger A B and Ulrich S. Schubert A B C D
+ Author Affiliations
- Author Affiliations

A Laboratory of Macromolecular Chemistry and Nanoscience, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands.

B Dutch Polymer Institute (DPI), PO Box 902, 5600 AX Eindhoven, the Netherlands.

C Laboratory of Organic and Macromolecular Chemistry, Friedrich-Schiller-University Jena, Humboldtstrasse 10, D-07743 Jena, Germany.

D Corresponding authors. Email: r.hoogenboom@tue.nl; ulrich.schubert@uni-jena.de

Australian Journal of Chemistry 62(3) 236-243 https://doi.org/10.1071/CH08503
Submitted: 17 November 2008  Accepted: 16 December 2008   Published: 20 March 2009

Abstract

Nowadays, microwave heating has evolved into a common tool for chemists based on its numerous advantages over conventional conductive heating. Surprisingly, the efficiency of microwave-assisted heating is still rather unexplored. In this contribution, we report our investigations concerning the heating efficiency of a variety of solvents including polar and apolar substances. Moreover, the effects of adding salt or passive heating elements on the microwave heating efficiency will be addressed. Finally, the heating efficiency of demineralized water is discussed at different volumes and with different microwave power levels in both monomode and multimode microwave synthesizers, demonstrating maximum average heating efficiencies of 10% for small-scale vessels (5 mL), 20% for medium-scale (50 mL), and 30% for large-scale microwave heating (400 mL).


Acknowledgements

The authors thank the Dutch Polymer Institute (DPI) and the Fonds der Chemischen Industrie for financial support. CEM is thanked for the grant that allowed the purchase of the large vessel upgrade.


References


[1]   Hayes B. L., Microwave Synthesis: Chemistry at the Speed of Light 2002 (CEM Publishing: Matthews, NC).

[2]   Loupy A., Microwaves in Organic Synthesis 2002 (Wiley VCH: Weinheim).

[3]   Tierney J. P., Lidstrom P., Microwave-Assisted Organic Chemistry 2004 (Taylor & Francis Group: Abingdon, UK).

[4]   C. O. Kappe, Angew. Chem. Int. Ed. 2004, 43,  6250.
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        |  CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        |  CAS |  open url image1