Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Two Novel Triazole-Based Metal–Organic Frameworks Consolidated by a Flexible Dicarboxylate Co-ligand: Hydrothermal Synthesis, Crystal Structure, and Luminescence Properties

En-Cui Yang A , Qing-Qing Liang A , Xiu-Guang Wang A and Xiao-Jun Zhao A B
+ Author Affiliations
- Author Affiliations

A College of Chemistry and Life Science, Key Laboratory of Molecular Structure and Materials Performance, Tianjin Normal University, Tianjin 300387, China.

B Corresponding author. Email: xiaojun_zhao15@yahoo.com.cn

Australian Journal of Chemistry 61(10) 813-820 https://doi.org/10.1071/CH08147
Submitted: 10 April 2008  Accepted: 27 July 2008   Published: 6 October 2008

Abstract

To explore the effects of a co-ligand on the construction of mixed-ligand metal–organic frameworks (MOFs), two new triazole-based complexes with a flexible dicarboxylate as a co-ligand, {[Zn4(trz)4(gt)2(H2O)2](H2O)2}n 1 and {[Cd2(trz)2(gt)(H2O)2](H2O)4}n 2 (Htrz = 1,2,4-triazole; H2gt = glutaric acid), were synthesized and their structures were fully characterized by elemental analyses, IR spectroscopy, and single-crystal X-ray crystallography. Their thermal stability and luminescence emissions were further investigated to establish their structure–property relationship. Crystal structure determination showed that 1 is a neutral two-dimensional pillared-bilayer network consisting of 14-membered hydrophobic channels, whereas 2 is an infinite three-dimensional framework constructed from tetranuclear [Cd4(trz)4]4+ subunits. Interestingly, the overall structure of both MOFs can be solely supported by ZnII/CdII and trz anions, and were further consolidated by the introduction of a flexible gt co-ligand. In addition, the carboxylate groups in the co-ligand can also serve as a weak O–H···O hydrogen-bond acceptor to capture guest water molecules. The synchronous weight-loss behaviour of trz and gt anions presented by thermogravometric curves suggest their cooperative contributions to the thermal stability of the MOFs. In contrast, the fluorescence emissions of two complexes are significantly dominated by the core trz ligand, rather than the gt co-ligand and metal ions.


Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (20571056, 20703030), the National Key Fundamental Research Project of China (2005CCA01200), Natural Science Foundation of Tianjin (06YFJMJC03900, 07QTPTJC29800), and Tianjin Educational Committee (20060501, 2006ZD07). The authors also thank Dr Sanjukta Muhuri for her read-through and careful revisions of the manuscript.


References


[1]   S. Muthu, J. H. K. Yip, J. J. Vittal, J. Chem. Soc., Dalton Trans. 2002,  4561.
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        |  CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
         
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        |  CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        |  CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  open url image1

[30]   Nakamoto K., Infrared and Raman Spectra of Inorganic and Coordination Compounds 1986 (Wiley: New York, NY).

[31]   Sheldrick G. M., SADABS, Siemens Area Detector Absorption Corrected Software 1996 (University of Göttingen: Göttingen).

[32]   SAINT Software Reference Manual 1998 (Bruker AXS: Madison, WI).

[33]   Sheldrick G. M., SHELXTL NT, Ver. 5.1; Program for Solution and Refinement of Crystal Structures 1997 (University of Göttingen: Göttingen).