Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Cellular Automata Simulations of Vapor–Liquid Equilibria

Paul G. Seybold A B E , Matthew J. O’Malley A , Lemont B. Kier C and Chao-Kun Cheng D
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Wright State University, Dayton, OH 45435, USA.

B Department of Biochemistry, Wright State University, Dayton, OH 45435, USA.

C Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA.

D Department of Mathematical Sciences, Virginia Commonwealth University, Richmond, VA 23298, USA.

E Corresponding author. Email: paul.seybold@wright.edu

Australian Journal of Chemistry 59(12) 865-868 https://doi.org/10.1071/CH06230
Submitted: 3 July 2006  Accepted: 21 November 2006   Published: 20 December 2006

Abstract

Phase transitions and phase equilibria are among the most fundamental phenomena in the physical and environmental sciences. In the present work an asynchronous stochastic cellular automata model for the equilibrium between a liquid and its vapor is presented. The model is visual, dynamic, and employs just two rules—an attraction probability and a gravitational preference. Application of the attraction rule alone yields a ‘mist’ within the vapor, whereas application of the gravitational rule by itself yields an isothermal atmospheric profile. Application of both rules together causes the vapor to evolve to a liquid phase with a vapor phase above it. Introduction of a third rule for short-range attraction/repulsion more clearly resolves the liquid/vapor interface.


References


[1]   H. Orbey, S. I. Sandler, Modeling Vapor–Liquid Equilibria 1998 (Cambridge University Press: New York, NY).

[2]   J. W. P. Schmelzer, V. G. Baidakov, J. Phys. Chem. B 2001, 105,  11595.
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  open url image1