Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis and Biological Activity of AllostericModulators of GABAB Receptors, Part 1. N-(Phenylpropyl)-1-arylethylamines*

David I. B. Kerr A C , Jennifer Ong A , Michael V. Perkins B , Rolf H. Prager B D and Ni Made Puspawati B
+ Author Affiliations
- Author Affiliations

A Department of Anaesthesia and Intensive Care, University of Adelaide, Adelaide SA 5005, Australia.

B School of Chemistry, Physics and Earth Sciences, Flinders University, Adelaide SA 5001, Australia.

C Deceased, July 2005.

D Corresponding author. Email: rolf.prager@flinders.edu.au

Australian Journal of Chemistry 59(7) 445-456 https://doi.org/10.1071/CH06163
Submitted: 15 May 2006  Accepted: 5 July 2006   Published: 22 August 2006

Abstract

A series of 15 analogues of fendiline, and 34 derivatives of N-(3-phenylpropyl)-1-arylethylamine have been prepared for evaluation as positive allosteric modulators of GABAB receptors. The most active (EC50, 10 nM) was N-(3,3-diphenylpropyl)-1-(3-chloro-4-methoxyphenyl)ethylamine 6g.


Acknowledgments

N.M.P. is grateful for the award of an overseas scholarship from Austaid.


References


[1]   Neurotransmitters and Drugs (Eds Z. L. Kruk, C. J. Pycock) 1983 (Croom Helm: Kent).

[2]   G. Biggio, A. Concas, E. E. Costa, GABAergic Synaptic Transimission: Molecular, Pharmacological and Clinical Aspects 1992 (Raven Press: New York, NY).

[3]   D. I. B. Kerr, J. Ong, Pharmacol. Exp. Therap. 1995, 67,  187.
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  open url image1




* Part 2: D. I. B. Kerr, J. Khalafy, J. Ong, M. V. Perkins, R. H. Prager, N. M. Puspawati, M. Rimaz, Aust. J. Chem. 2006, 59, 457. doi:10.1071/CH06164