Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Template-Directed Assembly of a Macrocyclic Porphyrin Tetramer Using Olefin Metathesis

Jacinta M. Bakker A , Steven J. Langford A B , Melissa J. Latter A , Katrina A. Lee A and Clint P. Woodward A
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Monash University, Clayton VIC 3800, Australia.

B Corresponding author. Email: steven.langford@sci.monash.edu.au

Australian Journal of Chemistry 58(11) 757-761 https://doi.org/10.1071/CH05262
Submitted: 24 September 2005  Accepted: 21 October 2005   Published: 9 December 2005

Abstract

A macrocyclic porphyrin tetramer was prepared in 52% yield by olefin metathesis employing a 5,10,15,20-tetrapyridylporphyrin template.


Acknowledgements

This work was supported by the Australian Research Council, Discovery Project Scheme through award to S.J.L. (DP0556313), which is greatfully acknowledged. We thank Dr P. Nichols and S. Duck for their help in obtaining NMR and mass spectra, respectively.


References


[1]   A. H. Flood, R. J. A. Ramirez, W.-Q. Deng, R. P. Muller, W. A. Goddard, J. F. Stoddart, Aust. J. Chem. 2004, 57,  301.
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  open url image1




* Oxidation of 4 to form 5 did not occur with Pb(OAc)4 in CH3CO2H as outlined in the procedures of ref. [13]. Upon addition of catalytic quantities of Ac2O to Pb(OAc)4/CH3CO2H we obtained pyrrole 5 in high yields, as adopted from ref. [14]. We also observed formation of pyrrole 5 in good yield in the absence of Ac2O however the reaction was heated at 80°C for 1.5 h to achieve this.

Attempts to image the free base of square 11 using STM techniques have not been successful. We have attributed this to the more flexible nature of 11 and the heptyl side chains. This view is supported by ref. [12f] where STM of a tetraphenylporphyrin analogue on highly ordered pyrolytic graphite was possible when the template porphyrin was complexed, providing a more rigid structure.