Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

The Optical Spectroscopy of Extraterrestrial Molecules

Timothy W. Schmidt A C and Robert G. Sharp B
+ Author Affiliations
- Author Affiliations

A School of Chemistry, University of Sydney, Sydney NSW 2006, Australia.

B Anglo-Australian Observatory, Epping NSW 1710, Australia.

C Corresponding author. Email: t.schmidt@chem.usyd.edu.au




Tim Schmidt's research straddles many areas of physical and theoretical chemistry, primarily in molecular spectroscopy of conjugated carbon systems with technological and astrophysical application. He undertook undergraduate studies at the University of Sydney, postgraduate at Cambridge University, and a postdoctorial position at the University of Basel. Last year he completed this circle and took a lectureship at Sydney.



Rob Sharp's research covers a broad range of fields in astronomy. After completing his undergraduate studies at the University of Leicester, he continued with a PhD at the Cambridge Institute of Astronomy (Cambridge University), where he later undertook the role of instrument scientist for one of the first of a new breed of infrared (1–2 mm) integral field spectrographs. Rob moved in 2004 to Sydney and the Anglo-Australian Observatory, taking up the position of research fellow for the Two Degree Field facility (2dF) of the Anglo-Australian Telescope.

Australian Journal of Chemistry 58(2) 69-81 https://doi.org/10.1071/CH04269
Submitted: 10 November 2004  Accepted: 16 December 2004   Published: 21 February 2005

Abstract

The ongoing quest to identify molecules in the interstellar medium by their electronic spectra in the visible region is reviewed. Identification of molecular absorption is described in the context of the elucidation of the carriers of the unidentified Diffuse Interstellar Bands, and molecular emission is discussed with reference to the unidentified Red Rectangle bands. The experimental techniques employed in undertaking studies on the optical spectroscopy of extraterrestrial molecules are described and critiqued in the context of their application.


References


[1]   E. Herbst, Astrophys. J. 1973, 185,  505.
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  

[5]   www.parkes.atnf.csiro.au/

[6]   P. Thaddeus, M. C. McCarthy, Spectrochim. Acta A 2001, 57,  757.
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         

[10]   P. Neubauer-Guenther, T. F. Giesen, U. Berndt, G. Fuchs, G. Winnewisser, Spectrochim. Acta A 2003, 59,  431.
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  open url image1




* The mass limit above which electron degeneracy pressure cannot support a stellar core against the relentless crushing force of gravity was first derived by Subramanyan Chandrasekhar, for which he was later awarded a share in the 1983 Nobel Prize for Physics. Above 1.44 solar masses a stellar core will collapse to a neutron star or black hole, resulting in a supernova explosion rather than the formation of a planetary nebula. Precursor stars with masses in excess of 1.44 solar masses may still avoid ending their lives as supernova if enough mass is lost from the star, during its late evolutionary stages, to prevent the remaining core mass exceeding the Chandrasekhar limit.