Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Chemical Bonding in Octahedral XeF6 and SF6*

Matthias Lein A and Gernot Frenking A B
+ Author Affiliations
- Author Affiliations

A Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany.

B Corresponding author. Email: frenking@chemie.uni-marburg.de

Australian Journal of Chemistry 57(12) 1191-1195 https://doi.org/10.1071/CH04113
Submitted: 30 April 2004  Accepted: 8 November 2004   Published: 8 December 2004

Abstract

Quantum chemical density functional theory calculations have been carried out for octahedral XeF6 and SF6 at the BP86/TZ2P level with relativistic effects included by the ZORA approximation. The energy decomposition analysis of XeF6 and SF6 using neutral and charged fragments EF5 + F and EF5+ + F as well as E + F6 and E6+ + F66− indicates that the dominant E–F orbital interactions take place between σ-orbitals which have t1u symmetry in the octahedral point group. The contribution of the a1g orbitals is negligible in the 16 valence electron compound XeF6. The a1g contribution becomes larger in the 14 valence electron species SF6 but it is less important than the t1u term. The bonding between the neutral species comes mainly from covalent (orbital) interactions but the quasiclassical electrostatic attraction significantly contributes to the attractive interactions. The bonding which comes from the ΔEorb term is compensated by the Pauli repulsion ΔEPauli. The sum of ΔEorb and ΔEPauli is repulsive for XeF6 and SF6, which would not be stable molecules without quasiclassical electrostatic attraction.


Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft. Excellent service by the Hochschulrechenzentrum of the Philipps-Universität Marburg is gratefully acknowledged. Additional computer time was provided by the HLRS Stuttgart, HLR Darmstadt, and the CSC Frankfurt.


References


[1]   Noble Gas Compounds (Ed. H. H. Hyman) 1967 (University of Chicago: Chicago, IL).

[2]   N. Bartlett, Proc. Chem. Soc. 1962, 218,  1.
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
         
         
         
         open url image1

[20]   T. A. Albright, J. K. Burdett, M. H. Whangbo, Orbital Interactions in Chemistry 1985, p. 259 (Wiley: New York, NY).




* Theoretical studies of inorganic compounds. Part 32. Part 31: C. Esterhuysen, G. Frenking, Theoret. Chem. Acc. 2004, 111, 381. doi:10.1007/S00214-003-0535-2