#### 10.1071/BT23092

Australian Journal of Botany

#### **Supplementary Material**

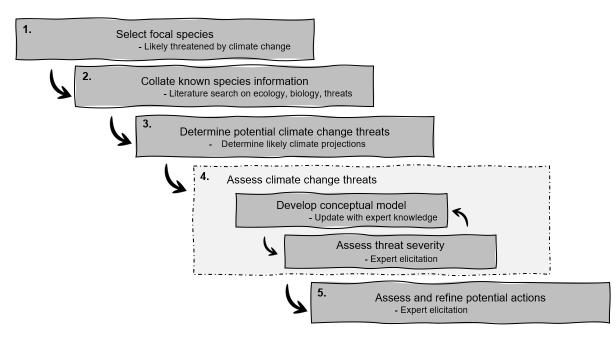
# Evaluation of management options for climate-change adaptation of threatened species: a case study of a restricted orchid

Caitlin R. Rutherford<sup>A,\*</sup>, Andrew M. Rogers<sup>B</sup>, Suzanne M. Prober<sup>C</sup>, Erika M. Roper<sup>D</sup>, Emma Cook<sup>E</sup>, and April E. Reside<sup>A,B,F</sup>

<sup>A</sup>School of the Environment, University of Queensland, St Lucia, Qld, Australia.

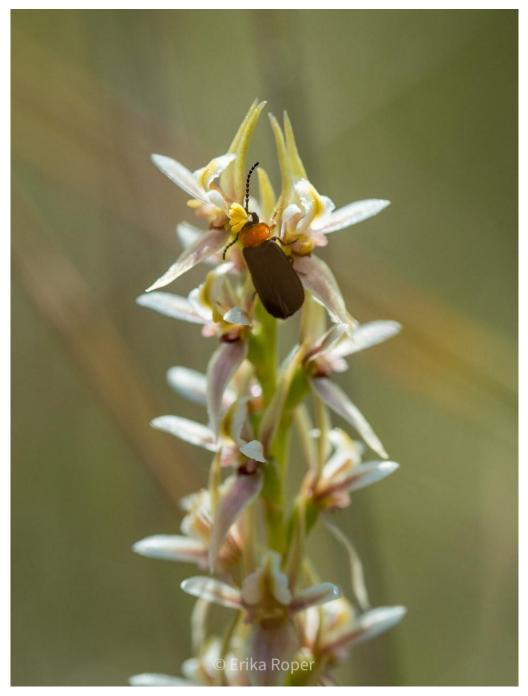
<sup>B</sup>Centre for Biodiversity and Conservation Science, University of Queensland, St Lucia, Brisbane, Qld 4072, Australia.

<sup>c</sup>CSIRO Environment, Acton, ACT, Australia.


<sup>D</sup>NSW Department of Climate Change, Energy, Environment, and Water, Queanbeyan, NSW 2620, Australia.

<sup>E</sup>ACT Office of Nature Conservation, Canberra, ACT, Australia.

<sup>F</sup>School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Qld 4343, Australia.


<sup>\*</sup>Correspondence to: Caitlin R. Rutherford School of the Environment, University of Queensland, St Lucia, Qld, Australia Email: caitlinrutherford37@gmail.com; caitlin.rutherford@uq.net.au

### Framework, adapted from Cross et al. (2012)



**Fig. S1.** Framework for incorporating climate change adaptation into species management, adapted from Cross *et al.* (2012) for rare or restricted species. Step 4 is an iterative process that can be updated to inform management actions (Step 5)

### Photograph of *P. petilum* pollinator



**Fig. S2.** Tricolor soldier beetle (*Chauliognathus tricolour*) was observed pollinating *P. petilum* (E. Roper, pers. comm., 2021).

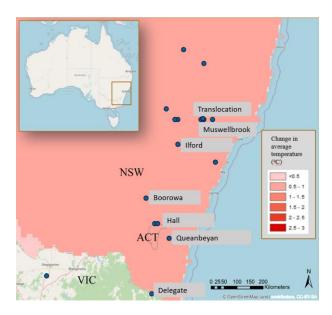
### Population information

| Population name                      | Population size                                                                                                                                           | Habitat                                                                                                                                                                                                                                                              | Notes                                                                                                       |  |  |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|
| 1. ACT                               |                                                                                                                                                           |                                                                                                                                                                                                                                                                      |                                                                                                             |  |  |
| Hall, ACT                            | Flowering individuals fluctuate<br>yearly between 0 (1994) and<br>96 (1995). Median number of<br>flowering individuals is 42                              | Yellow Box Blakely's Red Gum grassy woodland<br>( <i>Eucalyptus melliodora</i> and <i>Eucalyptus blakelyi</i> ).<br>Native Kangaroo Grass ( <i>Themeda triandra</i> ), Wallaby<br>grasses ( <i>Rytidosperma spp.</i> ) occur with patches of<br>non-native grasses   | Active burial site. Managed under Hall<br>Cemetery Management Plan 2012.<br>(Wilson et al. 2016; EPSD 2019) |  |  |
| 2. South-eastern region              |                                                                                                                                                           |                                                                                                                                                                                                                                                                      |                                                                                                             |  |  |
| Boorowa, NSW                         | 2314 (2020 estimate).                                                                                                                                     | Natural Temperate Grassland of the Southern<br>Tablelands. Population occurs in open swards of<br>tussock grass including <i>Bothriochloa macra</i> ,<br><i>Pentapogon quadrifidus</i> and <i>Austrodanthonia</i> spp.<br>Dense <i>Themeda triandra</i> swards occur | Actions proposed under Saving Our<br>Species strategy<br>(DECCW 2010; OEH 2021a)                            |  |  |
| Delegate, NSW                        | 2101 (2020 estimate)                                                                                                                                      | Natural Temperate Grassland of the Southern Tablelands with surrounding <i>Eucalyptus pauciflora</i>                                                                                                                                                                 | Actions proposed under Saving Our<br>Species Strategy<br>(DECCW 2010; OEH 2021a)                            |  |  |
| 3. Northern region                   |                                                                                                                                                           |                                                                                                                                                                                                                                                                      |                                                                                                             |  |  |
| llford, NSW                          | 6 (2009 estimate)                                                                                                                                         | Yellow Box Blakely's Red Gum grassy woodland. Dense cover of <i>Themeda triandra</i> and <i>Sorghum leiocladum</i>                                                                                                                                                   | Active but infrequent burials. Site occurs<br>within conservation area<br>(DECCW 2010)                      |  |  |
| Translocation (Hunter<br>Valley) NSW | 1824 individuals translocated<br>between 2010-2015. Minimum<br>of 4% and maximum of 63%<br>detection of flowering<br>individuals reported across<br>years | Rehabilitated mixture of native and exotic grassland and woodland                                                                                                                                                                                                    | Population translocated to rehabilitated<br>mine site.<br>(Bell 2020)                                       |  |  |
| Muswellbrook (Hunter<br>Valley), NSW | Unknown (small scattered populations)                                                                                                                     | Grasslands from former <i>Eucalyptus crebra/E. moluccana</i> woodlands.                                                                                                                                                                                              | Populations may be Prasophyllum sp.<br>'Wybong'<br>(Bell 2020; OEH 2021a)                                   |  |  |

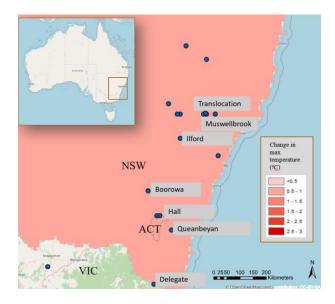
### **Table S1.** Population and habitat information for known *P. petilum* populations

### Climate change projections for south-eastern Australia

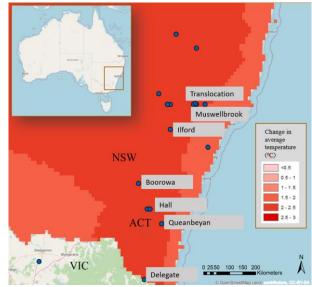
The following outlines a general summary of changes in climate in NSW and the ACT (OEH 2014a). Due to the annual life cycle of *P. petilum*, changes may affect populations during different seasons, hence why seasonal climate change is presented. NARCliM uses four global climate models (GCMs), downscaled by three regional climate models (RCMs) under the high emissions scenario (A2) from the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) to generate high resolution (10km) regional models for south-east Australia over three time periods (1990-2009 – baseline; 2020-2039 – near future; 2060-2079 – far future) (Evans et al., 2014).


**Table S2.** Climate changes for south-eastern Australia in each season for the near (2020-2039) and far (2060-2079) future (OEH 2014a)

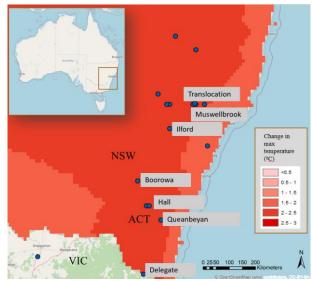
| Summer                                                                 |                                                               |
|------------------------------------------------------------------------|---------------------------------------------------------------|
| Near Future                                                            | Far Future                                                    |
| Increased average (+0.6°C), maximum (+1°C) and                         | Increased average (+2°C), maximum (+2.4°C) and                |
| minimum (+0.9°C) temperature <sup>1</sup>                              | minimum (+2.5°C) temperature                                  |
| Increased number of hot days <sup>2</sup> (>35 <sup>o</sup> C) (+5-10  | Increased number of hot days (>35°C) (+10-20                  |
| days)                                                                  | days)                                                         |
| Increased rainfall <sup>3</sup> (+0-5% in southern                     | Increased rainfall (+5-10% southern populations;              |
| populations), decreased rainfall (-0-5% in Northern                    | +10-20% northern populations)                                 |
| region)                                                                |                                                               |
| Increased fire weather (mean daily FFDI and                            | Increased fire weather (mean daily FFDI (+0.5-1)              |
| severe FFDI days)                                                      | and severe FFDI days (+0-0.5 days)                            |
| Autumn                                                                 |                                                               |
| Near Future                                                            | Far Future                                                    |
| Increased average (~+0.5°C), maximum (+0.5°C)                          | Increased average (+2°C), maximum (+1.9°C) and                |
| and minimum (+0.6°C) temperature                                       | minimum (+2.1°C) temperature                                  |
|                                                                        | Increased number of hot days (>35 <sup>o</sup> C) (+0.5 days) |
| Increased rainfall (+5-10% southern populations,                       | Increased rainfall (+5-20%)                                   |
| +10-20% northern populations)                                          |                                                               |
| Winter                                                                 |                                                               |
| Near Future                                                            | Far Future                                                    |
| Increased average (+0.4°C), maximum (+0.4°C)                           | Increased average (+1.7°C), maximum (+1.6°C)                  |
| and minimum (+0.4 <sup>o</sup> C) temperature                          | and minimum (+1.6°C) temperature                              |
| Decreased rainfall (-0-5%), possible increase in                       | Decreased rainfall (-0-5% Hall; -10-20% Delegate),            |
| Delegate population (+0-5%)                                            | increased rainfall (+0-10% Boorowa, Ilford, Hunter            |
|                                                                        | Valley)                                                       |
| Increased fire weather (mean daily FFDI)                               | Increased fire weather (mean daily FFDI (+0-1))               |
| Spring                                                                 |                                                               |
| Near Future                                                            | Far Future                                                    |
| Increased average (+0.8°C), maximum (+o.8°C)                           | Increased average (+2.3°C), maximum (+2.4°C)                  |
| and minimum (+0.7°C) temperature                                       | and minimum (+2.1°C) temperature                              |
| Increased number of hot days (>35°C) (+0-5 days)                       | Increased number of hot days (>35°C) (+5-10                   |
|                                                                        | days)                                                         |
| Decreased rainfall (-5-20% all populations)                            | Decreased rainfall (-5-20% all populations)                   |
| Increased fire weather (mean daily FFDI and                            | Increased fire weather (mean daily FFDI (+1-2)                |
| severe FFDI days)                                                      | and severe FFDI days (0.5-1 day)                              |
| <sup>1</sup> approximate average change compared with baseline modelle | ed climate (1990-2009)                                        |


<sup>1</sup>approximate average change compared with baseline modelled climate (1990-2009)

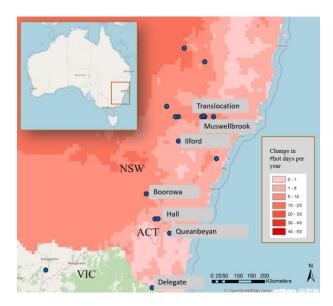
<sup>2</sup>fewer hot days are projected in the south (Delegate), while more are projected in northern population locations <sup>3</sup>average percentage rainfall increase compared with baseline


### a) near future

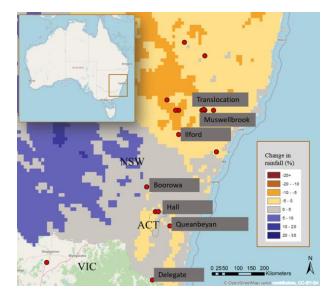



### c) near future

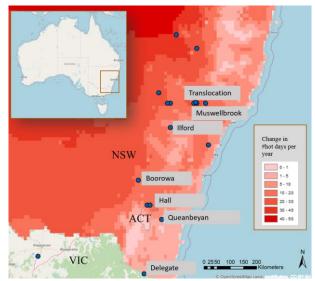



### b) far future

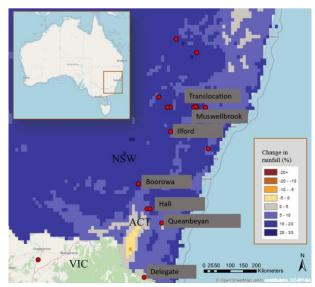



### d) far future

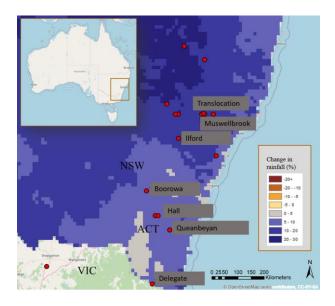



### e) near future

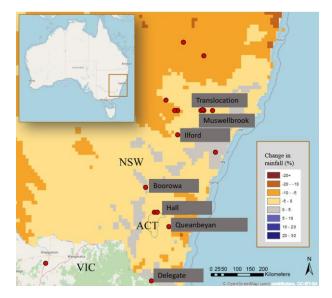



### g) near future

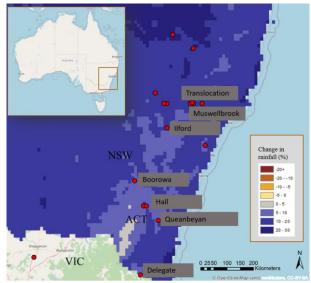



### f) far future

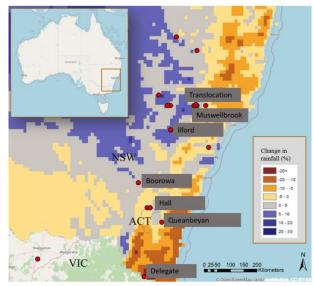



### h) far future




### i) near future

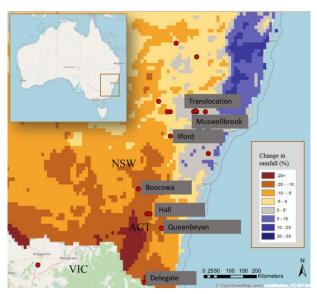



### k) near future



# j) far future




# l) far future



### m) near future



n) far future



o) near future





**Fig. S3.** Climate change projections for south-eastern Australia (NSW and ACT) for (a) and (b) mean annual change in average temperature, (c) and (d) mean annual change in maximum temperature, (e) and (f) mean change in hot (>35°) days per year, (g) and (h) mean change in annual summer rainfall percentage, (i) and (j) mean change in annual autumn rainfall percentage, (k) and (l) mean change in annual winter rainfall percentage, (m) and (n) mean change in annual spring rainfall percentage, (o) and (p) mean change in number of severe fire weather days (FFDI>50) per year. Verified populations are labelled on each map and some unverified records are also shown. The population near Queanbeyan is no longer considered an extant population. Data sources: ALA 2020; OEH 2014b.

### Workshop 1 materials

 Table S3. Example format of questionnaire MS Excel spreadsheet provided to experts to complete

|                                                                                                                                                                                  |               |                                                |    |           |                                               | In the nea        | r future (2020     | uture (2020 - 2039) |                   | In the far future (2060 - |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------|----|-----------|-----------------------------------------------|-------------------|--------------------|---------------------|-------------------|---------------------------|-------|
|                                                                                                                                                                                  |               |                                                |    |           |                                               | Severity<br>Score | Certainty<br>Score | Notes               | Severity<br>Score | Certainty<br>Score        | Notes |
| Direct climate change impacts on <i>P. petilum</i> populations                                                                                                                   |               |                                                |    |           |                                               |                   |                    |                     |                   |                           |       |
| These climate factors may impact any component of the orchid ecology including seed set and recruitment, germination, emergence, flowering, genetic diversity, or growth period. |               |                                                |    |           |                                               |                   |                    |                     |                   |                           |       |
| 1a.                                                                                                                                                                              | The impact of | severe fire events in<br>summer/spring         |    |           | will impact <i>P. petilum</i> populations by: |                   |                    |                     |                   |                           |       |
| 1b.                                                                                                                                                                              | The impact of | increased number of hot<br>days in all seasons |    |           | will impact <i>P. petilum</i> populations by: |                   |                    |                     |                   |                           |       |
| Impact of climate change on OMF to <i>P. petilum</i> populations                                                                                                                 |               |                                                |    |           |                                               |                   |                    |                     |                   |                           |       |
| OMF is an essential symbiont with P. petilum, assisting germination and exchanging (carbon) with the orchid roots.                                                               |               |                                                |    | nutrients |                                               |                   |                    |                     |                   |                           |       |
| 3d.                                                                                                                                                                              | The impact of | severe fire events in<br>summer/spring         | on | OMF       | will impact <i>P. petilum</i> populations by: |                   |                    |                     |                   |                           |       |

**Table S4.** Potential threats to *P. petilum* populations. Experts were asked to estimate the severity of each threat to *P. petilum*.

Threat

- 1 Direct threats to populations
  - 1a. severe fire events in summer/spring\*
  - 1b. increased number of hot days in all seasons\*
  - 1c. increased average and maximum temperature in all seasons\*
  - 1d. reduced winter/spring rainfall\*
  - 1e. habitat loss/degradation
  - 1f. vegetative competition with weeds
  - 1g. vegetative competition with native grasses
  - 1h. grazing
- 2 Threats to pollinators
  - 2a. severe fire events in summer/spring on pollinators\*
  - 2b. increased number of hot days in all seasons on pollinators\*
  - 2c. average and maximum temperature in all seasons on pollinators\*
  - 2d. shortened growth period on pollinators
  - 2e. changed climate niche on pollinators\*

3 Threats to OMF

- 3a. increased number of hot days in all seasons on OMF\*
- 3b. average and maximum temperature in all seasons on OMF\*
- 3c. reduced winter/spring rainfall on OMF\*
- 3d. severe fire events in summer/spring on OMF\*
- 3e. fertiliser runoff on OMF

#### 4 Threats to habitat

4a. average and maximum temperature in all seasons on habitat quality\*

- 4b. reduced winter/spring rainfall on habitat quality\*
- 4c. increased summer/autumn rainfall on habitat quality\*
- 4d. drought on habitat quality\*
- 4e. severe fire events in summer/spring on habitat quality \*
- 4f. changed climate niche on habitat quality\*
- 4g. fertiliser runoff on habitat quality
- 4h. weed incursion on habitat quality
- 5 Threats to microenvironment
  - 5a. severe fire events in summer/spring on microenvironment\*
  - 5b. increased number of hot days in all seasons on microenvironment\*
  - 5c. average and maximum temperature in all seasons on microenvironment \*
  - 5d. drought on microenvironment\*
  - 5e. reduced winter/spring rainfall on microenvironment\*
  - 5f. habitat loss/degradation on microenvironment
  - 5g. weed incursion on microenvironment

### 6 Threats to weeds

- 6a. average and maximum temperature in all seasons on weeds\*
- 6b. increased summer/autumn rainfall on weeds\*

\* Asterisks represent climate related threats.

### Top 13 most severe threats in the far future

Table S5. Mean severity of the top 13 most severe threats in the far future, with the associated near

#### future severity

| Threat                                             | Near future mean | Far future mean | P-value* |
|----------------------------------------------------|------------------|-----------------|----------|
| meat                                               | severity         | severity        |          |
| reduced winter/spring rainfall                     | 3.125            | 3.75            | <0.05    |
| grazing                                            | 3.25             | 3.75            | <0.1     |
| drought on microenvironment                        | 3                | 3.714285714     | <0.05    |
| habitat loss/degradation                           | 3.375            | 3.625           | =0.17    |
| reduced winter/spring rainfall on microenvironment | 3                | 3.571428571     | <0.05    |
| habitat loss/degradation on microenvironment       | 3.333333333      | 3.5             | =0.5     |
| drought on habitat quality                         | 2.875            | 3.428571429     | <0.1     |
| reduced winter/spring rainfall on OMF              | 2.6              | 3.4             | <0.05    |
| changed climate niche on pollinators               | 2.6              | 3.4             | <0.1     |
| weed incursion on microenvironment                 | 2.833333333      | 3.333333333     | =0.19    |
| vegetative competition with weeds                  | 2.875            | 3.25            | =0.19    |
| increased summer/autumn rainfall on weeds          | 2.714285714      | 3.142857143     | =0.19    |
| weed incursion on habitat quality                  | 2.625            | 3.125           | <0.1     |

\*Wilcoxon's signed-rank test using 'wilcox.test' function in R (R Core Team 2024). This test determined if the median difference is significantly larger than zero.

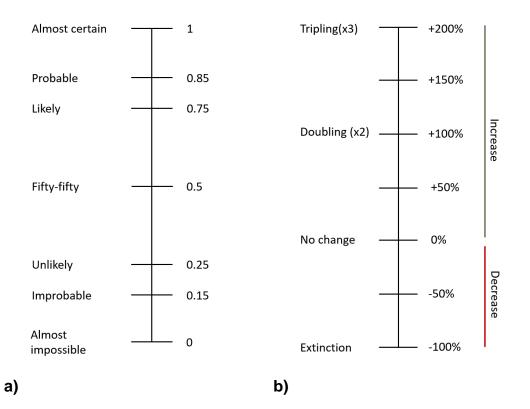
### Workshop 2 Materials

**Table S6.** List of potential actions developed in Workshop 2, with descriptions of the action, the desired response of P. petilum from the actions, and the threats addressed by the actions.

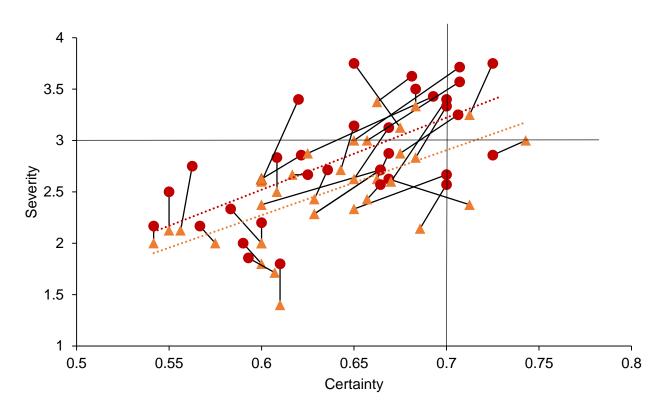
| Potential actions                          | Description and desired response                                                                                                                                                                                      | Threats addressed                                                                              |  |  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|
| Supplementary watering                     | Maintain optimal soil moisture, increased emergence and flowering                                                                                                                                                     | Reduced winter/spring rainfall on<br>populations, OMF and<br>microenvironment, drought         |  |  |
| Fencing/exclosures                         | Protect patches or populations from grazing/browsing. Reduce damage, increase flowering, pollination and recruitment.                                                                                                 | Grazing/browsing                                                                               |  |  |
| Caging                                     | Protect individuals or small patches from<br>grazing/browsing. Reduce damage, increase<br>flowering, pollination and recruitment.                                                                                     | Grazing/browsing                                                                               |  |  |
| Mowing regime                              | Minimum height requirements, mowing restrictions<br>during growth period. Reduce biomass and<br>resource competition, increase germination<br>and emergence, while reducing structural<br>damage to individual plants | Site management, vegetative competition with weeds and natives                                 |  |  |
| Controlled burns                           | Cool burns during the dormant seasons to reduce<br>biomass and resource competition, increase<br>germination and emergence                                                                                            | Vegetative competition with weeds and<br>natives, increased summer/autumn<br>rainfall on weeds |  |  |
| Grazing regime                             | Stock grazing during dormant season to reduce<br>biomass and resource competition, increase<br>germination and emergence                                                                                              | Vegetative competition with weeds and<br>natives, increased summer/autumn<br>rainfall on weeds |  |  |
| Translocation                              | Translocate ex situ propagated plants to new suitable locations. Establish new populations, increase wild population numbers                                                                                          | Habitat loss/degradation                                                                       |  |  |
| Hand pollination                           | Increased seed production, increased wild and ex-<br>situ seed bank, potentially increase wild<br>population size.                                                                                                    | Changed climate niche on pollinators                                                           |  |  |
| Restoration of habitat                     | Create suitable habitat for orchid translocations                                                                                                                                                                     | Habitat loss/degradation on populations and microenvironment                                   |  |  |
| Assisted gene flow<br>between populations* | Mix different temperature adapted individuals                                                                                                                                                                         | Increased max temperatures and hot days                                                        |  |  |
| Species distribution<br>modelling*         | SDM of current distribution to search for existing<br>populations. Habitat and climate suitability<br>modelling to determine suitable sites for new<br>populations in the future.                                     | Reduced winter/spring rainfall                                                                 |  |  |
| Ex-situ climate<br>threshold trials*       | Inform suitable locations for translocations, identify future at-risk populations                                                                                                                                     | Reduced winter/spring rainfall,<br>increased max temperatures                                  |  |  |
| Map OMF distribution*                      | Inform suitable locations for translocations                                                                                                                                                                          |                                                                                                |  |  |

| Pollinator ID and ecology* | Inform suitable locations for translocations.<br>Understand impact of climate change on<br>pollinator phenology and orchid association.                                                                                                               | Changed climate niche on pollinators, fire on pollinators   |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Monitoring and analysis*   | Analyse existing rainfall and temperature data with<br>population data to further understand<br>components of climate impact on populations.<br>Modelling. Analyse controlled burn data to<br>determine impact of fire on flowering and<br>emergence. | Reduced winter/spring rainfall on microenvironment, drought |

\*Research actions are marked with an asterisk


**Table S7.** Example format of questionnaire MS Excel spreadsheet provided to workshop participants in workshop 2.

|                           | ACT     |             | South-eastern region |             | Northern region |             |                                                                                        |  |
|---------------------------|---------|-------------|----------------------|-------------|-----------------|-------------|----------------------------------------------------------------------------------------|--|
| Potential Actions         | Benefit | Feasibility | Benefit              | Feasibility | Benefit         | Feasibility | Notes (e.g.<br>reasons for score,<br>beneficial<br>interactions with<br>other actions) |  |
| Supplementary<br>watering |         |             |                      |             |                 |             |                                                                                        |  |
| Fencing/exclosures        |         |             |                      |             |                 |             |                                                                                        |  |

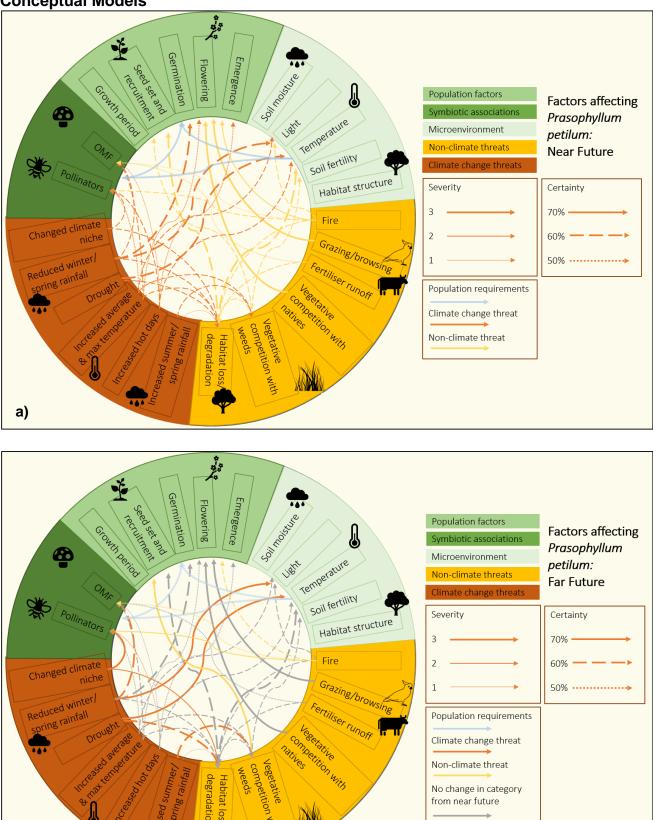

Feasibility and benefit

Feasibility

Benefit



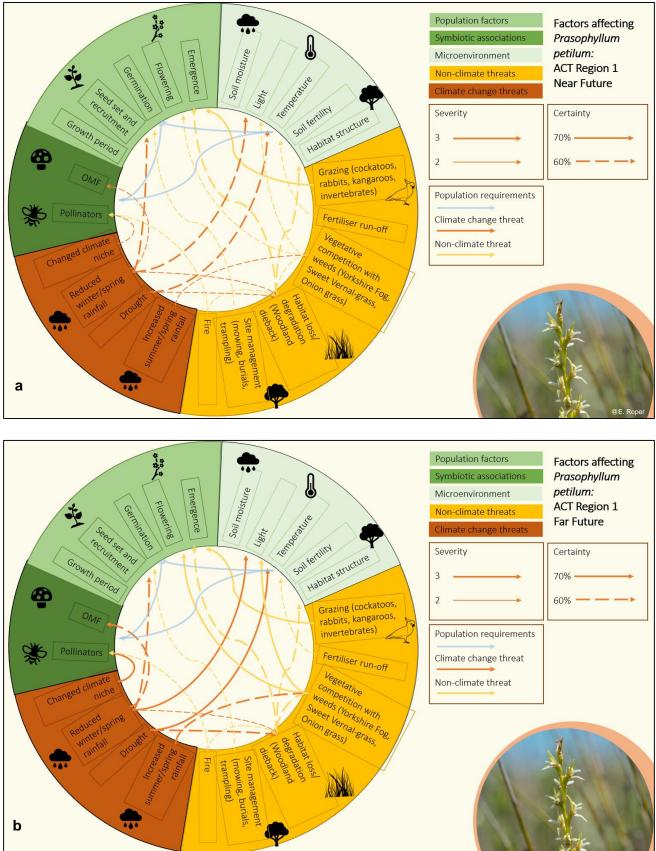
**Fig. S4.** Scales utilised by experts to estimate (a) feasibility (adapted from Carwardine et al. 2012) and (b) benefit (adapted from Rout and Walshe 2021), measured as percentage change in the population, of each action.



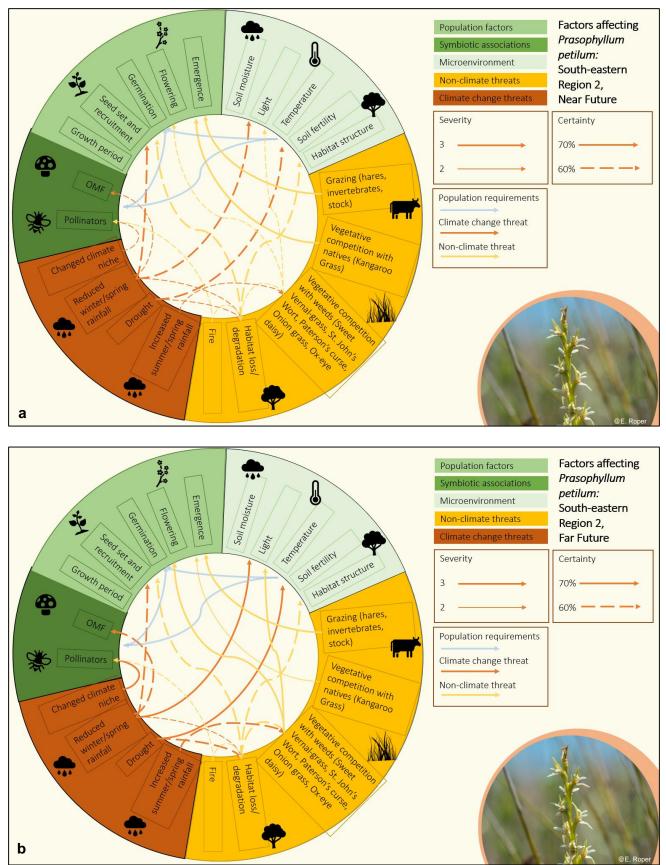

Severity and certainty of threats to *P. petilum* over the near and far future

**Fig. S5.** Mean severity versus certainty of each threat to *P. petilum* estimated for the near (orange triangles) and far future (red circles). The same threats are connected by a black line indicating the change in severity and certainty.

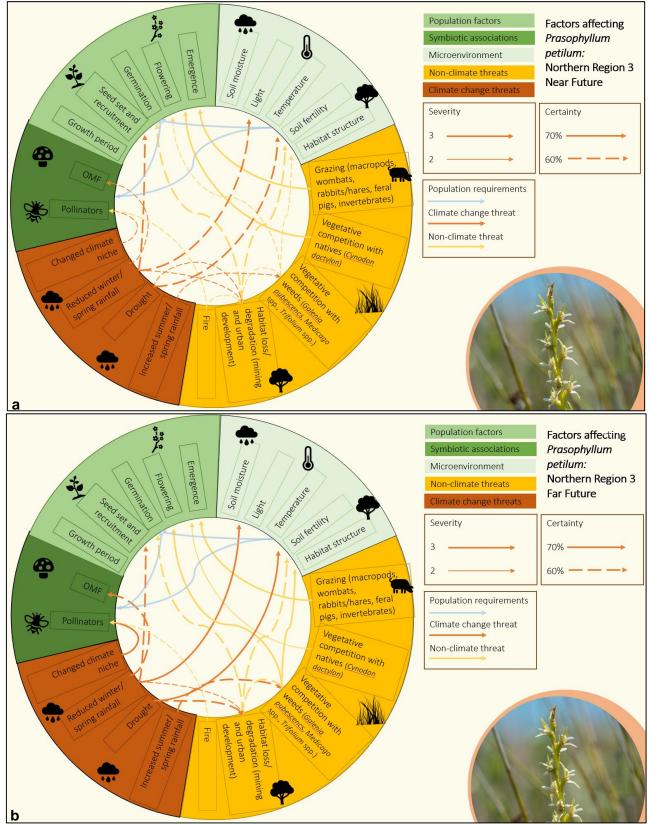
#### **Conceptual Models**


b)




AN**P** 

**Fig. S6** The updated conceptual model incorporated expert estimates of threat severity and certainty for *P. petilum* in (a) the near future (2020 – 2039) and (b) the far future (2060 – 2079). Greyed lines in 6b indicate no change in threat or certainty category between near and far future. Lines arrows that do not connect with individual factors (boxes) indicate the threat may impact the suite of factors in that section. This model summarises threats to all populations (Supplementary Material, Table S4). Regional conceptual models are found in Fig. S7, S8 and S9


### **Regional conceptual models**



**Fig. S7.** Conceptual model of threats affecting the ACT *P. petilum* population in the (a) near future and (b) far future. Weeds detailed here are Yorkshire Fog (*Holcus lanatus*), Sweet Vernal-grass (*Anthoxanthum odoratum*) and Onion Grass (*Romulea rosea*).



**Fig. S8.** Conceptual model of threats affecting South-eastern *P. petilum* populations in the (a) near future and (b) far future. Weeds detailed here are Sweet Vernal-grass (*Anthoxanthum odoratum*), Onion Grass (*Romulea rosea*), St John's Wort (*Hypericum perforatum*), Paterson's curse (*Echium plantagineum*), Ox-eye daisy (*Leucanthemum vulgare*). Only Delegate is grazed by stock.



**Fig. S9.** Conceptual model of threats affecting Northern *P. petilum* populations in the (a) near future and (b) far future. These populations are small and scattered amongst cemeteries and mining sites and include a large translocation site in the Hunter Valley (Bell, 2020). Winter rainfall will increase in the far future for most northern locations, though spring rainfall will still decrease. Summer rain will initially decrease for these locations (near future) but will increase by the far future.

### Workshop 2 terminology

| Terminology               |                                                                                                                                                                                                                                                                                                                                     |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Feasibility               | Probability of an action being successfully implemented, from 0 to 1, with 0 being<br>an action that is impossible to achieve and 1 being an action that is certain to<br>be achieved. Feasibility may account for social, economic, political, knowledge<br>and logistical constraints (Carwardine et al. 2012; Cross et al. 2012) |
| Benefit                   | Impact of an action to the species, based on percentage change in population size (Rout and Walshe 2021).                                                                                                                                                                                                                           |
| Successful implementation | Implemented to the point that the maximum potential benefit has been attained                                                                                                                                                                                                                                                       |

Table S8. Definitions of terminology used in management elicitation

### Estimated decline in population

Table S9. Estimated percentage change in the ACT P. petilum population/management region by

the far future (2060 – 2079) under different management paradigms. The range of responses are

shown in parentheses.

|                                                                                                                         | Mean percentage change in population size* |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|--|--|--|
| If all management ceased, what would the trajectory for<br><i>Prasophyllum petilum</i> populations be?                  | -92% (-75 - 100%)                          |  |  |  |  |  |
| If we continue with current management, what is the trajectory for<br><i>Prasophyllum petilum</i> populations?          | -20% (050%)                                |  |  |  |  |  |
| * Managers estimated a decline in both scenarios, with a larger decline if all management ceased (P < 0.05; paired one- |                                            |  |  |  |  |  |

tailed t-test using 't.test' function in R (R Core Team 2024).

### References

- Atlas of Living Australia (ALA) (2020) 'Prasophyllum petilum occurrence data.' Available at <u>https://spatial.ala.org.au/?q=lsid:https:%2F%2Fid.biodiversity.org.au%2Fnode%2Fapni%2F289</u> <u>9002&qualityProfile=ALA&fq=occurrence\_status:%22PRESENT%22</u> [Verified 1 September 2021]
- Bell SAJ (2020) Translocation of threatened terrestrial orchids into non-mined and post-mined lands in the Hunter Valley of New South Wales, Australia. Restoration Ecology 28, 1396–1407.
- Carwardine J, O'Connor T, Legge S, Mackey B, Possingham HP, Martin TG (2012) Prioritizing threat management for biodiversity conservation. Conservation Letters 5, 196–204.
- Cross MS, Zavaleta ES, Bachelet D, Brooks ML, Enquist CAF, Fleishman E, Graumlich LJ, Groves CR, Hannah L, Hansen L, Hayward G (2012) The adaptation for conservation targets (ACT) framework: a tool for incorporating climate change into natural resource management. Environmental Management 50, 341–351.
- Department of Agriculture, Water and the Environment (DAWE) (2021) 'Conservation Advice for Prasophyllum petilum (Tarengo Leek Orchid).' (Department of Agriculture, Water and the Environment: Canberra) Available at <u>https://www.environment.gov.au/biodiversity/threatened/species/pubs/55144-conservation-advice-29092021.pdf</u> [Verified 2 February 2024]
- Department of Environment, Climate Change and Water NSW (DECCW) (2010) 'National Recovery Plan for the Tarengo Leek Orchid Prasophyllum petilum.' (Department of Environment, Climate Change and Water: Hurstville) Available at <u>https://www.dcceew.gov.au/sites/default/files/documents/prasophyllum-petilum-recoveryplan.pdf</u> [Verified 1 August 2021]
- Environment, Planning and Sustainable Development Directorate, ACT Government (EPSD) (2019) 'ACT Native Woodland Conservation Strategy: Tarengo Leek Orchid Prasophyllum Petilum Action Plan.' (Environment, Planning and Sustainable Development, ACT Government: Canberra) Available at <u>https://www.environment.act.gov.au/ data/assets/pdf file/0005/576527/Woodland-Conservation-Strategy-Tarengo-Leek-Orchid.pdf</u> [Verified 1 August 2021]
- Evans JP, Ji F, Lee C, Smith P, Argüeso D, Fita L (2014) Geoscientific Model Development Design of a regional climate modelling projection ensemble experiment-NARCliM. *Geosci. Model Dev* **7**, 621–629.
- Office of Environment and Heritage NSW (OEH) (2014a) 'New South Wales Climate change snapshot.' (Office of Environment and Heritage: Sydney South) Available at <u>https://www.climatechange.environment.nsw.gov.au/sites/default/files/2021-</u> <u>06/NSW%20climate%20change%20snapshot.pdf</u> [Verified 16 August 2021]
- Office of Environment and Heritage NSW (OEH) (2014b) "MultiModelMean\_NARCLiM Domain\_All Epochs\_All Variables\_Annual and Seasonal" (dataset).' NSW Office of Environment and Heritage. Available at <a href="https://climatechange.environment.nsw.gov.au/Climate-projections-for-NSW/Climate-projections-for-your-region/NSW-Climate-Change-Downloads">https://climatechange.environment.nsw.gov.au/Climate-projections-for-NSW/Climate-projections-for-your-region/NSW-Climate-Change-Downloads</a> [Verified 10 October 2021]

- Office of Environment and Heritage NSW (OEH) (2021b) 'Tarengo Leek Orchid (Prasophyllum petilum): Saving our Species strategy.' NSW Office of Environment and Heritage: Sydney South) Available at <a href="https://www.environment.nsw.gov.au/savingourspeciesapp/project/224">https://www.environment.nsw.gov.au/savingourspeciesapp/project/224</a> [Verified 16 August 2021]
- R Core Team (2024) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Available at <a href="https://www.R-project.org/">https://www.R-project.org/</a> [Verified 28 July 2024]
- Rout T, Walshe T (2021) 'PACES Tool relative population size measure.' Excel workbook. TSR Hub. Available at <u>https://www.nespthreatenedspecies.edu.au/publications-and-tools/paces-tool-relative-population-size-measure-excel-workbook</u> [Verified 1 November 2021]
- Wilson N, Seddon J, Baines G (2016) 'Factors influencing the flowering of the Tarengo Leek Orchid (Prasophyllum petilum).' Technical Report 36. (Environment, Planning and Sustainable Development Directorate, ACT Government: Canberra) Available at <u>https://www.environment.act.gov.au/\_\_\_data/assets/pdf\_file/0018/1026342/TR36-Factors-influencing-the-flowering-of-the-Tarengo-Leek-Orchid.pdf</u> [Verified 1 August 2021]