AMS Applications in Nuclear Astrophysics: New Results for 13C(n,γ)14C and 14N(n,p)14C
A. Wallner A B I , K. Buczak A , I. Dillmann C , J. Feige A , F. Käppeler C , G. Korschinek D , C. Lederer A , A. Mengoni E , U. Ott F , M. Paul G , G. Schätzel A , P. Steier A and H. P. Trautvetter HA VERA Laboratory, Faculty of Physics, University of Vienna, Austria
B Department of Nuclear Physics, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200, Australia
C Karlsruhe Institute of Technology (KIT), Campus Nord, Institut für Kernphysik, Karlsruhe, Germany
D Physik Department der Technischen Universität München, Germany
E International Atomic Energy Agency, Nuclear Data Section, Austria
F Max-Planck-Institute for Chemistry, Hahn-Meitner-Weg 1, D-55128 Mainz, Germany
G Racah Institute of Physics, Hebrew University, Jerusalem, Israel
H Institut für Experimentalphysik, Ruhr-Universitaet Bochum, D-44780 Bochum, Germany
I Corresponding author. Email: anton.wallner@univie.ac.at, anton.wallner@anu.edu.au
Publications of the Astronomical Society of Australia 29(2) 115-120 https://doi.org/10.1071/AS11069
Submitted: 30 November 2011 Accepted: 21 March 2012 Published: 2 May 2012
Abstract
The technique of accelerator mass spectrometry (AMS) offers a complementary tool for studying long-lived radionuclides in nuclear astrophysics: (1) as a tool for investigating nucleosynthesis in the laboratory; and (2) via a direct search of live long-lived radionuclides in terrestrial archives as signatures of recent nearby supernova-events. A key ingredient to our understanding of nucleosynthesis is accurate cross-section data. AMS was applied for measurements of the neutron-induced cross sections 13C(n,γ) and 14N(n,p), both leading to the long-lived radionuclide 14C. Solid samples were irradiated at Karlsruhe Institute of Technology with neutrons closely resembling a Maxwell–Boltzmann distribution for kT = 25 keV, and with neutrons of energies between 123 and 178 keV. After neutron activation the amount of 14C nuclides in the samples was measured by AMS at the VERA (Vienna Environmental Research Accelerator) facility. Both reactions, 13C(n,γ)14C and 14N(n,p)14C, act as neutron poisons in s-process nucleosynthesis. However, previous experimental data are discordant. The new data for both reactions tend to be slightly lower than previous measurements for the 25 keV Maxwell–Boltzmann energy distribution. For the higher neutron energies no previous data did exist for 13C(n,γ), but model calculations indicated a strong resonance structure between 100 and 300 keV which is confirmed by our results. Very limited information is available for 14N(n,p) at these energies. Our new data at 123 and 178 keV suggest lower cross sections than expected from previous experiments and data evaluations.
Keywords: techniques: miscellaneous — nuclear reactions, nucleosynthesis, abundances
References
Arazi, A. et al., 2006, PhRvC, 74, 025802Bishop, J. and Egli, R., 2012, Icar, 212, 960
Brehm, K. et al., 1988, ZA, 330, 167
| 1:CAS:528:DyaL1cXks1ahtbs%3D&md5=8f51fb1ea45d054e5e8dceaa3a758d6fCAS |
Dillmann, I. et al., 2009, PhRvC, 79, 065805
Dillmann, I. et al., 2010, NIMPB, 268, 1283
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFSit7s%3D&md5=07cbf57da8d611a5752cfb62c665a2c1CAS |
Ellis, J., Fields, B. D. and Schramm, D. N., 1996, ApJ, 470, 1227
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmvFKlsLc%3D&md5=a8e73469f8cb57eaaae0caec8feeadf4CAS |
Chadwick, M. B. et al., 2011, NDS, 112, 2887
| 1:CAS:528:DC%2BC3MXhsFKrs7jI&md5=d422eeb9723fe695a73582fae0ae17a5CAS |
Feige, J., et al., 2012, PASA, Special Issue on Astronomy with Radioactivities
Gibbons, J. H. and Macklin, R. L., 1959, PhRv, 114, 571
| 1:CAS:528:DyaG1MXhtVeqtb4%3D&md5=c43a9d267e48e069fa2f3e105e740df1CAS |
Herndl, H., Hofinger, R., Jan, J., Oberhummer, H., Görres, J., Wiescher, M., Thielemann, F. K. and Brown, B. A., 1999, PhRvC, 60, 064614
Iliadis, C., 2007, Nuclear Physics of Stars (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA), 518
Johnson, C. H. and Barschall, H. H., 1950, PhRv, 80, 818
| 1:CAS:528:DyaG3MXotFWh&md5=d147669f2438b025d53867d317eeef08CAS |
Käppeler, F., Gallino, R., Bisterzo, S. and Aoki, W., 2011, RvMP, 83, 157
Kii, T., Shima, T., Sato, H., Baba, T. and Nagai, Y., 1999, PhRvC, 59, 3397
| 1:CAS:528:DyaK1MXjtlSrtrw%3D&md5=99edca4d0b5a44aa82d809c85b3052efCAS |
Knie, K. et al., 2004, PhRvL, 93, 171103
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2cros1Ghtw%3D%3D&md5=65675298a203e7a9a313bcb3f4240655CAS |
Koehler, P. E. and O’Brien, H. A., 1989, PhRvC, 39, 1655
| 1:CAS:528:DyaL1MXit1Siu7s%3D&md5=61163ae447f5821624971210ccf7e19dCAS |
Korschinek, G. et al., 1996, Radiocarbon, 38, 68
Lugaro, M. et al., 2004, ApJ, 615, 934
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFChtb3O&md5=b264c126b7d82837c54dc47e4648e204CAS |
Lugaro, M. et al., 2008, A&A, 484, 27
Nassar, H. et al., 2004, NuPhA, 746, 613
Nassar, H. et al., 2005a, PhRvL, 94, 092504
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M7lt12jsg%3D%3D&md5=f62f982c09f37016061088dfd4814b57CAS |
Nassar, H. et al., 2005b, NuPhA, 758, 411
Nassar, H. et al., 2006, PhRvL, 96, 041102
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD287gtFyjsg%3D%3D&md5=45e880911a3809d7d060775297f65da5CAS |
Ott, U., et al., 2012, PASA, Special Issue on Astronomy with Radioactivities
Paul, M. et al., 2001, ApJL, 558, 133
| Crossref | GoogleScholarGoogle Scholar |
Paul, M. et al., 2003a, NuPhA, 718, 239
Paul, M. et al., 2003b, NuPhA, 719, C29
Paul, M. et al., 2007, JRNC, 272, 243
| 1:CAS:528:DC%2BD2sXjvVWqtLo%3D&md5=557f0014a551a661d3bd57e3cca52f1aCAS |
Raman, S., Igashira, M., Dozono, Y., Kitazawa, H. and Lynn, J. E., 1990, PhRvC, 41, 458
| 1:CAS:528:DyaK3cXht1Kku7o%3D&md5=2aa1859c2837d40156dae20a567c462fCAS |
Ratynski, W. and Käppeler, F., 1988, PhRvC, 37, 595
| 1:CAS:528:DyaL1cXhtVansLo%3D&md5=c9b6f0d57818dcdfe42056dfa636fa31CAS |
Reifarth, R., Heil, M., Käppeler, F. and Plag, R., 2009, NIMPA, 608, 139
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvFCgsLg%3D&md5=91fabc21c5cb0c9e03d6d5a7dd732913CAS |
Rugel, G. et al., 2007, NIMPB, 259, 683
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFKjs7c%3D&md5=5a4a25e3303038004053c5da38cf309fCAS |
Rugel, G. et al., 2009, PhRvL, 103, 7
Sanami, T. et al., 1997, NIMPA, 394, 368
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsFOiu70%3D&md5=12759f6a5ee6eadf00fe7c46b2dc1d9dCAS |
Shima, T., Watanabe, K., Irie, T., Sato, H. and Nagai, Y., 1995, NIMPA, 356, 347
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkvVakt74%3D&md5=bfbba5b691867a885c44ab1255d49c11CAS |
Shima, T., Okazaki, F., Kikuchi, T., Kobayashi, T., Kii, T., Baba, T., Nagai, Y. and Igashira, M., 1997, NuPhA, 621, 231
Steier, P. et al., 2005, NIMPB, 240, 445
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCisLbP&md5=7bfd87da8287fcbe77ed9d5d92b13a02CAS |
Wallner, A., 2010, NIMPB, 268, 1277
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFSit7o%3D&md5=92973b388c4a3b244797f53b0067ddd5CAS |
Wallner, C., Faestermann, T., Gerstmann, U., Knie, K., Korschinek, G., Lierse, C. and Rugel, G., 2004, NewAR, 48, 145
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXosFCqsQ%3D%3D&md5=b2dae23b326f55a1fa264f2da0ffc95eCAS |
Wallner, A. et al., 2007, NIMPB, 259, 677
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFKjs7Y%3D&md5=b75191aff6c1d6029e040c1ff957b26aCAS |
Wallner, A. et al., 2008, JPhG, 35, 014018
Wallner, A., et al., 2012, NIMPB, in press