Maser Source-Finding Methods in HOPS
A. J. Walsh A F , C. Purcell B , S. Longmore C , C. H. Jordan A D and V. Lowe D EA Centre for Astronomy, School of Engineering and Physical Sciences, James Cook University, Townsville, QLD 4814, Australia
B School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
C European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany
D CSIRO Astronomy and Space Science, PO BOX 76, Epping, NSW 1710, Australia
E School of Physics, University of NSW, Sydney, NSW 2052, Australia
F Corresponding author. Email: andrew.walsh@jcu.edu.au
Publications of the Astronomical Society of Australia 29(3) 262-268 https://doi.org/10.1071/AS11062
Submitted: 21 October 2011 Accepted: 24 November 2011 Published: 16 December 2011
Abstract
The H2O Southern Galactic Plane Survey (HOPS) has observed 100 deg2 of the Galactic plane, using the Mopra radio telescope to search for emission from multiple spectral lines in the 12-mm band (19.5–27.5 GHz). Perhaps the most important of these spectral lines is the 22.2-GHz water-maser transition. We describe the methods used to identify water-maser candidates and subsequent confirmation of the sources. Our methods involve a simple determination of likely candidates by searching peak emission maps, utilising the intrinsic nature of water-maser emission, spatially unresolved and spectrally narrow-lined. We estimate completeness limits and compare our method with results from the duchamp source finder. We find that the two methods perform similarly. We conclude that the similarity in performance is due to the intrinsic limitation of the noise characteristics of the data. The advantages of our method are that it is slightly more efficient in eliminating spurious detections and is simple to implement. The disadvantage is that it is a manual method of finding sources and so is not practical on datasets much larger than HOPS, or for datasets with extended emission that needs to be characterised. We outline a two-stage method for the most efficient means of finding masers, using duchamp.
Keywords: masers — stars: formation — surveys — techniques: spectroscopic
References
Barlow, M. J. et al., 1996, A&AL, 315, 341Caswell, J. L. et al., 2010, MNRAS, 404, 1029
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns1Chtb4%3D&md5=1db507fa49ff18096bf09de2d8040827CAS |
Cheung, A. C., Rank, D. M. and Townes, C. H., 1969, Nature, 221, 626
| Crossref | GoogleScholarGoogle Scholar |
Claussen, M. J. et al., 1984, ApJL, 285, 79
| Crossref | GoogleScholarGoogle Scholar |
Claussen, M. J., Wilking, B. A., Benson, P. J., Wootten, A., Myers, P. C. and Terebey, S., 1996, ApJS, 106, 111
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvFehu7k%3D&md5=9b0e0cff7d4dfab996ee01031a604cccCAS |
Dickinson, D. F., 1976, ApJS, 30, 259
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XktFahsr4%3D&md5=0d957a913684da5c564fa883e09883c1CAS |
Egan, M. P. and Price, S. D., 1996, AJ, 112, 2862
Forster, J. R. and Caswell, J. L., 1999, A&AS, 137, 43
| 1:CAS:528:DyaK1MXktlSmsrY%3D&md5=37a7ccf325ed704440677a891b6f27d1CAS |
Forster, J. R. and Caswell, J. L., 2000, ApJ, 530, 371
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitVKqur4%3D&md5=ae7c3b3c6518390567532fde64f4f52dCAS |
Gundermann, E., 1965, PhD Thesis, Harvard University, Cambridge, MA, USA
Hinkle, K. H. and Barnes, T. G., 1979, ApJ, 227, 923
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhtlSntbY%3D&md5=b08c923c82b874911c30d4ebc545cbfaCAS |
Johnston, S. et al., 2007, PASA, 24, 174
| Crossref | GoogleScholarGoogle Scholar |
Miranda, L. F., G'omez, Y., Anglada, G. and Torrelles, J. M., 2001, Nature, 414, 284
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFaqu7s%3D&md5=efc3ab3af06b2f88d1856aa99515897fCAS |
Purcell, C. R. et al., 2011, MNRAS, ,
Voronkov, M. A., Sobolev, A. M., Ellingsen, S. P. and Ostrovskii, A. B., 2005, MNRAS, 362, 995
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFeksLvK&md5=89fe8b44771d3f7ca7b5974a692728a2CAS |
Walsh, A. J., Burton, M. G., Hyland, A. R. and Robinson, G., 1998, MNRAS, 301, 640
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtVOjtA%3D%3D&md5=7e8bdff57aa79d13dbadd4071e333c70CAS |
Walsh, A. J., Myers, P. C., Di Francesco, J., Mohanty, S., Bourke, T. L., Gutermuth, R. and Wilner, D., 2007, ApJ, 655, 958
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVKgtLs%3D&md5=3c6336758c52418ede8447c09fd865d3CAS |
Walsh, A. J., Lo, N., Burton, M. G., White, G. L., Purcell, C. R., Longmore, S. N., Phillips, C. J. and Brooks, K. J., 2008, PASA, 25, 105
| Crossref | GoogleScholarGoogle Scholar |
Walsh, A. J. et al., 2011, MNRAS, 416, 1764
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlers7vK&md5=d4d538e2e12f80ecd59cd7dc14223e09CAS |
Weaver, H., Williams, D. R. W., Dieter, N. H. and Lum, W. T., 1965, Nature, 208, 29
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28Xot12j&md5=0bd648ce0fbc8df96df61f89b3889184CAS |
Whiting, M., 2011, MNRAS, ,
Williams, J. P., de Geus, E. J. and Blitz, L., 1994, ApJ, 428, 693
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXms1Kqt7k%3D&md5=2a9f4df33607fde8468139c3357c2eb0CAS |