Assessing the Accuracy of Radio Astronomy Source-Finding Algorithms
S. Westerlund A B , C. Harris A and T. Westmeier AA ICRAR/University of Western Australia, M468 35 Stirling Highway, Crawley, WA 6009, Australia
B Corresponding author. Email: stefan.westerlund@icrar.org
Publications of the Astronomical Society of Australia 29(3) 301-308 https://doi.org/10.1071/AS11049
Submitted: 13 September 2011 Accepted: 12 January 2012 Published: 16 February 2012
Abstract
This work presents a method for determining the accuracy of a source finder algorithm for spectral line radio astronomy data and the Source Finder Accuracy Evaluator (SFAE), a program that implements this method. The accuracy of a source finder is defined in terms of its completeness, reliability, and accuracy of the parameterisation of the sources that were found. These values are calculated by executing the source finder on an image with a known source catalogue, then comparing the output of the source finder to the known catalogue. The intended uses of SFAE include determining the most accurate source finders for use in a survey, determining the types of radio sources a particular source finder is capable of accurately locating, and identifying optimum parameters and areas of improvement for these algorithms. This paper demonstrates a sample of accuracy information that can be obtained through this method, using a simulated ASKAP data cube and the duchamp source finder.
Keywords: methods: data analysis
References
Barnes, D. G. et al., 2001, MNRAS, 322, 486| Crossref | GoogleScholarGoogle Scholar |
DeBoer, D. et al., 2009, Proc. IEEE, 97, 1507
| Crossref | GoogleScholarGoogle Scholar |
Edmonds, J. and Karp, R. M., 1972, JACM, 19, 248
| Crossref | GoogleScholarGoogle Scholar |
Koribalski, B. S. & Staveley-Smith, L., 2009, Proposal for WALLABY: Widefield ASKAP L-Band Legacy All-Sky Blind Survey, available at http://www.atnf.csiro.au/research/WALLABY/proposal.html, last accessed 2011 September 9
Kuhn, H., 1955, Nav. Res. Log., 2, 83
| Crossref | GoogleScholarGoogle Scholar |
Meyer, M. et al., 2004, MNRAS, 350, 1195
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXls1Sjurc%3D&md5=a45ea5e988dc074b2b07256ef6e8123aCAS |
Obreschkow, D., Klöckner, H.-R., Heywood, I., Levrier, F. and Rawlings, S., 2009, ApJ, 703, 1890
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlehsLzF&md5=f1a7503115f58706e5dc2aa75ed995d6CAS |
Sault, B. & Killeen, N., 2008, Miriad Multichannel Image Reconstruction, Image Analysis and Display Users Guide, available at http://www.atnf.csiro.au/computing/software/miriad/, last accessed 2010 December 15
Warren, B. E., 2011, Sky Tessellation Patterns for Field Placement for the All-Sky HI Survey WALLABY, Tech. Rep.
Westerlund, S., 2010, iVEC Internship Report, available at http://www.icrar.org/__data/assets/pdf_file/0006/1750866/stefan_westerlund_ivec_report.pdf, last accessed 2011 July 21
Whiting, M. T., 2012, MNRAS, in press (ArXiv 1201.2710)
Whiting, M., 2010, ASKAP Simulations, Set #2, available at http://www.atnf.csiro.au/people/Matthew.Whiting/ASKAPsimulations, last accessed 2010 December 15
Zwaan, M. A. et al., 2004, MNRAS, 350, 1210
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXls1Sju70%3D&md5=206e778a5b1e251e3285272b0d2f0ad1CAS |