Medium-Resolution s-process Element Survey of 47 Tuc Giant Stars
C. C. Worley A D and P. L. Cottrell B CA Observatoire de la Côte d'Azur, B.P. 4229, Nice, Cedex 04, France
B The Beatrice Tinsley Institute, Department of Physics & Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
C Max Planck Institut für Astrophysik, Karl-Schwarzschild Str 1, 85741, Garching, Germany
D Corresponding author. Email: cworley@oca.eu
Publications of the Astronomical Society of Australia 29(1) 29-41 https://doi.org/10.1071/AS11048
Submitted: 13 September 2011 Accepted: 14 October 2011 Published: 16 December 2011
Abstract
Medium-resolution (R ~ 6500) spectra of 97 giant stars in the globular cluster 47 Tucanæ (47 Tuc) have been used to derive the C- and N-abundance sensitive index, δC, and to infer abundances of several key elements (Fe, Na, Si, Ca, Zr and Ba) for a sample of 13 of these stars with similar effective temperature (Teff) and surface gravity (log g). These stars have stellar properties similar to the well-studied 47 Tuc giant star, Lee 2525, but with a range of CN excess (δC) values which are a measure of the CN abundance. The δC index is shown to be correlated with Na abundance for this sample, confirming previous studies. Fe, Ca, Si and the light and heavy s-process (slow neutron capture) elements, Zr and Ba, respectively, have a narrow range of abundance values, indicative of a homogeneous abundance within this population of stars. The constancy of many element abundances (Fe, Si, Ca, Zr, Ba) and the δC and Na abundance correlation could imply that there has been a second era of star formation in this cluster that has revealed the products of CNO-cycle burning via hot bottom burning (depletion of C, enhancement of N and the production of Na for high δC population). But there is no overall metallicity change across the range of δC values at a given position in the HR diagram as has been seen in some other globular clusters.
Keywords: globular clusters: individual (47 Tuc) — stars: abundances — stars: late-type
References
Alonso, A., Arribas, S. and Martínez-Roger, C., 1999, A&AS, 140, 261| 1:CAS:528:DC%2BD3cXpt1OmtA%3D%3D&md5=138a78f2ae514d7c71d657e7cec2348dCAS |
Briley, M. M., Harbeck, D., Smith, G. H. and Grebel, E. K., 2004, AJ, 127, 1588
Brown, J. A. and Wallerstein, G., 1992, AJ, 104, 1818
| 1:CAS:528:DyaK38XmsVahtr4%3D&md5=1ab32af802a9e737c6520261f77fff2aCAS |
Busso, M., Gallino, R., Lambert, D. L., Travaglio, C. and Smith, V. V., 2001, ApJ, 557, 802
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvV2rsb0%3D&md5=f40cee269ae1f03937e28c433ca51853CAS |
Campbell, S. W., Lattanzio, J. C., Elliott, L. M., 2006, ArXiv Astrophysics e-prints
Campbell, S. W., Yong, D., Wylie-de Boer, E. C., Stancliffe, R. J., Lattanzio, J. C., Angelou, G. C., Grundahl, F. and Sneden, C., 2010, MemSaIt, 81, 1004
| 1:CAS:528:DC%2BC3MXpsVKgurs%3D&md5=7a92c168775eb7a7d09e5dc5ff38728aCAS |
Cannon, R. D., Croke, B. F. W., Bell, R. A., Hesser, J. E. and Stathakis, R. A., 1998, MNRAS, 298, 601
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslKjsLg%3D&md5=a8db07f7e0408c57850f8704729b71c4CAS |
Cannon, R., da Costa G., Norris, J., Stanford, L., Croke, B., 2003, in New Horizons in Globular Cluster Astronomy Vol. 296 of the Astronomical Society of the Pacific Conference Series, Spectroscopy of Main Sequence Stars in Globular Clusters, ed. G. Piotto, G. Meylan, S. G. Djorgovski & M. Riello, 175
Cottrell, P. L. and da Costa, G. S., 1981, ApJL, 245, L79
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXitFOgsrY%3D&md5=78ec0230d63098e767135db44ba9534dCAS |
Gratton, R., Sneden, C. and Carretta, E., 2004, ARA&A, 42, 385
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpslGjsr0%3D&md5=ab86fce3340423d5e9dc52d8af4e8d3bCAS |
Hinkle K. Wallace L., 2005, in Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis Vol. 336 of Astronomical Society of the Pacific Conference Series, The Spectrum of Arcturus from the Infrared through the Ultraviolet, ed. T. G. Barnes III & F. N. Bash, 321
Karakas, A. I. and Lugaro, M., 2010, PASA, 27, 227
| Crossref | GoogleScholarGoogle Scholar |
Lee, S. W., 1977, A&AS, 27, 381
| 1:CAS:528:DyaE2sXhvVSntb4%3D&md5=03a1dfa49360aa7584616355f23eec7dCAS |
Lind, K., Asplund, M., Barklem, P. S. and Belyaev, A. K., 2011, A&A, 528, A103+
Milone, A. P., et al., 2011, ArXiv e-prints, 1109.0900
Norris, J. and Freeman, K. C., 1979, ApJL, 230,
| 1:CAS:528:DyaE1MXks1Kjt70%3D&md5=ec10614cdc6d70ca46b783710f420521CAS |
Paltoglou, G. Freeman K. C. 1984, PhD Thesis, Mt. Stromlo and Siding Spring Observatories, Institute of Advanced Studies, Australian National University (PF84)
Reschenhofer, E., 2001, Journal of Statistics Education, , 9
Sharp, R., et al., 2006, in Ground-based and Airborne Instrumentation for Astronomy Vol. 6269 of Proceedings of the SPIE, Performance of AAOmega: The AAT Multi-purpose Fiber-fed Spectrograph, I. S. McLean & I. Masanori, 62690G
Skrutskie, M. F., et al., 2006, ApJ, 131, 1163
Sneden, C., 1973, PhD Thesis, University of Texas at Austin
Sneden, C., Ivans, I. I. and Kraft, R. P., 2000, MemSaIt, 71, 657
| 1:CAS:528:DC%2BD3MXovVyjs7k%3D&md5=296f04af2beaa29e4b3ac5379543eeb7CAS |
Worley, C. C., Cottrell, P. L. and Wylie de Boer, E. C., 2008, PASA, 25, 53
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1amsbY%3D&md5=9a344fe97d41eb4ba92fc105cd044bcdCAS |
Worley, C. C., Cottrell, P. L., Freeman, K. C. and Wylie-de Boer, E. C., 2009, MNRAS, 400, 1039
| 1:CAS:528:DC%2BC3cXjsVGktQ%3D%3D&md5=b4baa70a4be6ab432478fb198cea87f0CAS |
Worley, C. C., Cottrell, P. L., McDonald, I. and van Loon, J. T., 2010, MNRAS, 402, 2060
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktlOntrc%3D&md5=568fb9685ac1520b46c0e3c1c32decb6CAS |
Wylie, E. C., Cottrell, P. L., Sneden, C. A. and Lattanzio, J. C., 2006, ApJ, 649, 248
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFChsbbK&md5=f7b88b779c880dc0677114a09b6f1cccCAS |