Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Publications of the Astronomical Society of Australia Publications of the Astronomical Society of Australia Society
Publications of the Astronomical Society of Australia
RESEARCH ARTICLE

2D–1D Wavelet Reconstruction as a Tool for Source Finding in Spectroscopic Imaging Surveys

L. Flöer A C and B. Winkel B
+ Author Affiliations
- Author Affiliations

A Argelander-Institut für Astronomie, Auf dem Hügel 71, 53121 Bonn, Germany

B Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany

C Corresponding author. Email: lfloeer@astro.uni-bonn.de

Publications of the Astronomical Society of Australia 29(3) 244-250 https://doi.org/10.1071/AS11042
Submitted: 7 September 2011  Accepted: 2 November 2011   Published: 4 January 2012

Abstract

Today, image denoising by thresholding of wavelet coefficients is a commonly used tool for 2D image enhancement. Since the data product of spectroscopic imaging surveys has two spatial dimensions and one spectral dimension, the techniques for denoising have to be adapted to this change in dimensionality. In this paper we will review the basic method of denoising data by thresholding wavelet coefficients and implement a 2D–1D wavelet decomposition to obtain an efficient way of denoising spectroscopic data cubes. We conduct different simulations to evaluate the usefulness of the algorithm as part of a source finding pipeline.

Keywords: methods: data analysis — techniques: image processing — techniques: spectroscopic


References

Atwood, W. B., et al., 2009, ApJ, 697, 1071
Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsF2hsbY%3D&md5=2d1144f1cf65e4cb7b8e545999a6fb5eCAS |

Barnes, D. G., et al., 2001, MNRAS, 322, 486
Crossref | GoogleScholarGoogle Scholar |

Candès, E., Demanet, L., Donoho, D. & Ying, L., 2006, Multiscale Modeling and Simulation, 5, 861

Giovanelli, R., et al., 2005, AJ, 130, 2598
| 1:CAS:528:DC%2BD28XjvFCnsQ%3D%3D&md5=77eef773f102562371a62f14fcf6bb7eCAS |

Holschneider, M., Kronland-Martinet, R., Morlet, J. & Tchamitchian, P., 1989, in Wavelets. Time-Frequency Methods and Phase Space, ed. J.-M. Combes, A. Grossmann & P. Tchamitchian (Berlin: Springer-Verlag), 286

Johnston, S., et al., 2008, ExA, 22, 151
Crossref | GoogleScholarGoogle Scholar |

Kerp, J., Winkel, B., Ben Bekhti, N., Flöer, L. and Kalberla, P. M. W., 2011, AN, 332, 637
Crossref | GoogleScholarGoogle Scholar |

Koribalski, B. S. & Staveley-Smith, L., 2009, ASKAP Survey Science Proposal

Koribalski, B. S., et al., 2004, AJ, 128, 16
| 1:CAS:528:DC%2BD2cXmsVagt7Y%3D&md5=7e2f111351d39252b92d0fdc54b66155CAS |

Murtagh, F., Starck, J.-L. and Bijaoui, A., 1995, A&AS, 112, 179

Nyquist, H., 1928, Trans AIEE, 47, 617

Oosterloo, T., et al., 2009, in Proceedings of Wide Field Astronomy & Technology for the Square Kilometre Array (SKADS 2009), 4–6 November 2009, Chateau de Limelette, Belgium, available at http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=132

Serra, J., 1982, Image Analysis and Mathematical Morphology (London: Academic Press)

Starck, J.-L. and Bobin, J., 2010, Proceedings of the IEEE, 98, 1021
Crossref | GoogleScholarGoogle Scholar |

Starck, J.-L., Fadili, J. and Murtagh, F., 2007, IEEE T Image Process, 16, 297

Starck, J.-L., Fadili, J. M., Digel, S., Zhang, B. and Chiang, J., 2009, A&A, 504, 641
| 1:CAS:528:DC%2BD1MXhtlWltb%2FK&md5=2fe64a2a0de6b31befa1832bb5853536CAS |

Starck, J.-L., Murtagh, F. & Fadili, J. M., 2010, Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity (Cambridge: Cambridge University Press)

Winkel, B., Kalberla, P. M. W., Kerp, J. and Flöer, L., 2010, ApJS, 188, 488
Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1Oqt78%3D&md5=89f325aff4f99cd368dc8a7afbeb7a82CAS |

Ying, L., Demanet, L. & Candes, E. J., 2005, in Proceedings of SPIE, Volume 5914, Wavelets XI, ed. M. Papadakis, A. F. Laine & M. A. Unser, 351