International Journal of Wildland Fire

Scientific Journal of the International Association of Wildland Fire

Contents	Volume 12	Number 2	2003
A review of prescribed burning effectiveness in fire hazard reduction <i>Paulo M. Fernandes and Hermínio S. Botelho</i>	117–128	The contribution of undesired effects of v ica, Australia and Eu readily apparent, esp and severity of a pos ficult to separate fre Operational, social a fire can, however, co pattern of treatment weather and how the critical to the success	prescribed burning to moderating the wildland fire is reviewed for North Amer- prope. The benefits of prescribed fire are becially regarding the potential intensity t-treatment wildfire, even if they are dif- tom the overall fire management effort, and ecological constraints to prescribed pompromise its effectiveness. The spatial and the characteristics of vegetation and y interact to determine the fire regime are s of a hazard-reduction burning program.
Assessing fire regimes on Grand Canyon landscapes with fire-scar and fire-record data <i>Peter Z. Fulé, Thomas A. Heinlein,</i> <i>W. Wallace Covington and Margaret M. Moore</i>	2 129–145	Fire-scar reconstruct Canyon National Parecorded fires >8 ha interrupted after 187 large surface fires an relatively undisrupted	tions of 20th-Century fires in Grand irk corroborated fire records for all 13 a. The frequent surface fire regime was 9 but isolated sites subsequently had 2–3 id several smaller fires, rare examples of d fire regimes.
Effects of fire season and intensity on <i>Prosopis glandulosa</i> Torr. var. <i>glandulosa</i> <i>Paul B. Drewa</i>	147–157	In pyrogenic ecosyst be influenced more be esis is not supported a resprouting shrub i United States. Shrub potentially increase season fires. However intensity as determine intensity will determine etration into soils an points of undergrout	ems, resprouting woody vegetation may by fire season than intensity. This hypoth- l in the context of <i>Prosopis glandulosa</i> , n desert grasslands of the south-western b height and numbers of resprouts can more after dormant season than growing er, these responses are contingent on fire ed primarily by fuel amount. In turn, fire ine the amount and duration of heat pen- d thus the amount of damage to growing nd organs.
Feasibility of forest-fire smoke detection using lidar Andrei B. Utkin, Armando Fernandes, Fernando Simões, Alexander Lavrov and Rui Vilar	159–166	The authors discuss by detection of sm technique. The inves evolution, estimatin smoke-plume location plume whose source under extremely unf demonstrated. The ep possibilities of provious of lidar sensitivity a pulse and high repetts or eye-safe radiation	the feasibility of forest fire surveillance oke plumes with a lidar (laser radar) tigations included tracing smoke-plume og forest-fire alarm promptness, and on. The possibility of locating a smoke e is out of line of sight and detection avourable visibility conditions was also ye hazard problem is addressed and three ding eye-safety conditions without loss are discussed: using a low energy-per- ition-rate laser; an expanded laser beam;
Calculation of fire spread rates across random landscapes <i>Mark A. Finney</i>	167–174	Methods were develo age spread rate of a of random fuels. Th lateral movement of fire spread in patch assuming fewer dim	pped for estimating the expected or aver- a fire moving across an area composed is two-dimensional calculation permits fire around obstacles and thus depicts y fuel mixtures better than calculations ensions.

Assessing forest fire potential in Kalimantan Island Indonesia, using satellite and surface weather data <i>Dodi Sudiana, Hiroaki Kuze, Nobuo Takeuchi,</i> <i>and Robert E. Burgan</i>	, 175–184	This paper describes the assessment of the forest fire potential in Kalimantan Island between 1981 and 1993 using AVHRR satellite data and weather data. The fire potential index shows good correlation with the hot-spot distribution derived from the AVHRR data, and the smoke aerosol distribution from the TOMS data.
Estimation of vegetative fuel loads using Landsat T imagery in New South Wales, Australia <i>Kate Brandis and Carol Jacobson</i>	M 185–194	Two different methods using remotely sensed data to esti- mate vegetative fuel loads are examined. The first classifies the data to predict vegetation types and couples this with fire history data to derive fuel loads. The second estimates canopy biomass and applies a canopy turnover rate to calculate litter- fall and accumulated litter. Advantages of this methodology include the estimation of fuel loads in remote areas, provi- sion of a spatial context to fuel loads and bushfire risk, and reduction of time spent in the field.
Reaction times and burning rates for wind tunnel headfires <i>Ralph M. Nelson, Jr.</i>	195–211	Fuel bed characteristics, combustion theory, and past stud- ies of stationary fires in wood cribs are used to develop models for predicting fuel bed reaction times and burning rates of headfires. Such models are potentially useful for bet- ter describing the behavior and effects associated with wild and prescribed fires. Model predictions are compared with experimental data for headfires burned in a wind tunnel.
Evaluation of fire danger rating indexes using logistic regression and percentile analysis <i>Patricia L. Andrews, Don O. Loftsgaarden and</i> <i>Larry S. Bradshaw</i>	213–226	The performance of fire danger rating systems can be assessed by comparing indexes to fire activity. Analysis can be used for choosing the most appropriate index for an area and for evaluating new indexes. Methods are available in the FireFamily Plus computer program. Techniques are demon- strated for the U.S. National Fire Danger Rating System and the Tonto National Forest in Arizona.
Fine-scale patchiness of different fire intensities in sandstone heath vegetation in northern Australia <i>Owen Price, Jeremy Russell-Smith and</i> <i>Andrew Edwards</i>	227–236	Rockiness was strongly related to the presence of unburned patches, measured in 5×5 m quadrats along 9.2 km of tran- sects for five different fires in sandstone heaths. Half of the 83 identified unburned patches were 10 m or less in length and only three were still detectable when data were amalga- mated into quadrats of 500 m^2 . Fires are much more patchy than satellite derived fire maps indicate, which has impor- tant implications for understanding how populations of fire sensitive plant will respond to different fire regimes.
Technical Note		
Autonomous field-deployable wildland fire sensors <i>R. Kremens, J. Faulring, A. Gallagher,</i> <i>A. Seema and A. Vodacek</i>	237–244	We have developed an inexpensive (US\$300, 2002 in small quantities) position-aware data acquisition package for use in collecting data and reporting fire status on wildland fires. Each acquisition unit contains a GPS receiver, radio transceiver and electronics for processing several signal inputs. These devices can acquire local weather, monitor and/or indicate the presence and intensity of a fire and report remotely via radio link to a base station or handi-talkie.
Corrigendum to:		
Ponderosa pine mortality following fire in northern <i>Charles W. McHugh and Thomas E. Kolb</i> Volume 12, Number 1 (2003), pages 7–22	Arizona 245	There has been an error in citation of certain references in the Methods section, relating to the methods used to determine scorch, bole char severity and ground char severity.