

International Association of Wildland Fire

Field-based generic empirical flame length-fireline intensity relationships for wildland surface fires

Carlos G. Rossa^{A,B,*}, David A. Davim^B, Ângelo Sil^B and Paulo M. Fernandes^B

For full list of author affiliations and declarations see end of paper

*Correspondence to: Carlos G. Rossa School of Technology and Management (ESTG), Polytechnic of Leiria, Apartado 4163, 2411-901 Leiria, Portugal Email: carlos.rossa@ipleiria.pt

ABSTRACT

Background. Fireline intensity (l_f) quantifies the power of the fireline and is used for various purposes. l_f and flame length (L_f) are relatable to each other using an empirical power function, which has been considered fuel-specific. Aims. The aim of this study was to develop generic $L_f - l_f$ relationships based on a robust set of field head fires from the literature (n = 797) conducted worldwide in forest, shrubland and grassland. Methods. L_f was determined from the base of the fuel bed for comparability across fires in different fuel heights, and the effect of vegetation type was examined. Key results. Although l_f could be approximately described using the same function in forest and shrubland, fires in grassland required different fitted coefficients; we speculate that fuel particles' surface area-to-mass ratio is the main fuel metric influencing flame structure. Conclusions. Fuel-generic relationships for l_f are reasonably accurate and encompass the high end of surface fire l_f . Previous studies suggested their unviability, most likely because of limitations in the number of observations and data ranges, difficulty in objectively measuring L_f and variation in L_f definition. Implications. The generic relationships presented in this work will be of interest for research and management purposes when specific models for l_f are non-existent.

Keywords: combustion metrics, fire behaviour, fire management, forest, fuel metrics, grassland, head fires, shrubland, surface area-to-mass ratio.

Introduction

Fireline intensity (I_f), also referred to as frontal fire intensity (usually in units of kW m⁻¹), quantifies the energy released per unit time (power) by unit fireline length of a vegetation fire and has been described as 'the single most valid characteristic of a fire's general behaviour' (Alexander 1982, p. 350). I_f is useful for various ends, namely the appraisal of aboveground fire effects (e.g. Weber *et al.* 1987), or as a guide for fire suppression difficulty (Hirsch and Martell 1996). By definition (Byram 1959), I_f is calculated as

$$I_{\rm f} = H w R \tag{1}$$

where *H*, *w* and *R* are, respectively, fuel heat yield, fuel load consumed by flaming combustion and fire spread rate. Byram (1959) established flame length (L_f) as a power function of I_f . The reciprocal of the relationship, or of empirically derived relationships of the same form, has been subsequently widely used to estimate I_f from L_f (Alexander and Cruz 2012):

$$I_{\rm f} = a \, L_{\rm f}^{\,b} \tag{2}$$

where a and b are fitted coefficients. The simplicity of Eqn 2 is appealing, but the existence of a wide variety of reported relationships has led to the assumption that its coefficients must be fuel-dependent (Alexander 1982; Cheney 1990; Alexander and Cruz 2012). Yet, the usual practice, namely in North-American fire modelling systems

Received: I August 2023 Accepted: I4 December 2023 Published: I5 January 2024

Cite this:

Rossa CG et al. (2024) International Journal of Wildland Fire **33**, WF23127. doi:10.1071/WF23127

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of IAWF. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

OPEN ACCESS

(Andrews 2018), is to assume a single $L_f - I_f$ equation for general use regardless of fuel bed nature and structure.

Some of the existing $L_f - I_f$ models for surface head fires have been derived from laboratory data in both natural fuel beds, like slash (Anderson *et al.* 1966), and artificial fuels, like wood cribs (Fons *et al.* 1963; Thomas 1963) and excelsior (Weise and Biging 1996). However, the majority of available $L_f - I_f$ relationships were obtained from field fires in forest (Byram 1959; Nelson 1980; Burrows 1994; Fernandes *et al.* 2009), shrubland (Van Wilgen 1986; Catchpole *et al.* 1998; Vega *et al.* 1998; Fernandes *et al.* 2000) and grassland (Nelson 1980; Clark 1983). A visual assessment of all plotted functions (Alexander and Cruz 2012) for field head fires seems to suggest that grassland requires shorter flames to produce the same I_f of fires in forest and shrubland, but the extant wide variation among the fitted relationships is not conclusive in this regard.

A proper evaluation of the feasibility of using generic $L_{\rm f} - I_{\rm f}$ relationships is impaired mostly by three limiting factors. Firstly, both laboratory and field fire measurements have important shortcomings: (1) laboratory experiments have scale issues and are limited in terms of the maximum $L_{\rm f}$ values that can be obtained; and (2) in field fires, it is usually difficult to accurately assess vegetation metrics and the amount of fuel consumed. Secondly, individual studies are usually: (1) limited in terms of the number of observations; and (2) developed for specific fuel complexes and thus limited in terms of the range in fuel structure descriptors. Thirdly, estimates of average $L_{\rm f}$ can be very subjective because: (1) flame pulsation causes great variations in instantaneous $L_{\rm f}$ (Byram and Nelson 1970); and (2) $L_{\rm f}$ is often assessed by visual estimation, which is known to vary among observers (Johnson 1982).

An additional difficulty in evaluating $L_{\rm f}$ is that many studies do not specify if the measure is taken from the fuel bed base or from its top (e.g. Fons et al. 1963; Anderson et al. 1966; Clark 1983). This typically makes little difference in litter fuels because fuel height (h) is usually small when compared with $L_{\rm f}$ but has the potential to cause great discrepancies in deeper fuel complexes, such as tall shrubland. Whether it is possible or not to derive generic $L_{\rm f} - I_{\rm f}$ relationships, an appropriate comparison between fuelspecific functions can only be made if $L_{\rm f}$ is assessed from the base of the fuel bed, as proposed for example by Rothermel and Deeming (1980). Because $L_{\rm f}$ is a visual manifestation of the combustion rate, i.e. the amount of fuel burnt per unit time (Byram 1959) and thus of the released thermal power, we must consider all visible flame, including within the fuel bed, to correspond as accurately as possible with the actual combustion rate. Fig. 1 shows the flame geometry of a wind-driven head fire (Rossa and Fernandes 2018a), as considered in the present study; favourable slope produces a similar flame configuration (Dupuy et al. 2011), because its effect is equivalent to that of wind in tilting fire towards the unburned fuel.

The $L_f - I_f$ relationship of Byram (1959) is currently almost universally used. However, it was seemingly developed from a limited number of fires (n = 41) in a single fuel type (pine forest with a grassy understorey), and the validity of its widespread application has never been properly evaluated. $L_f - I_f$ functions, suitable for a wide diversity of fuel complexes, would thus be of great interest for both scientific and operational purposes. Here we have developed such relationships, based on a large number of well-documented worldwide experimental fires in forest, shrubland and grassland.

Methods

Data sources

The BONFIRE worldwide database (Fernandes *et al.* 2020) was the source of data for this study. BONFIRE comprises outdoors fire behaviour characteristics and the corresponding fire environment descriptors gathered from an exhaustive search of the peer-reviewed and grey literature. Included are data pertaining to the forward spread of individual experimental fires in any vegetation type, as well as from prescribed fire operations and wildfires, but excluding fires initiated by exceedingly narrow ignition lines (<2-m length) or featuring potential interaction between fire fronts.

Each BONFIRE record includes data reliability ratings as per Cheney *et al.* (2012) and was attributed a generic vegetation type (forest, shrubland, grassland), a broad fuel type (e.g. long needle conifer) and a fuel complex defined by the fuel layer(s) carrying the fire (e.g. litter + shrub). The compiled records were considered eligible for our analysis if they pertained to an experimental study represented by a minimum of three fires and if rated with high reliability. After applying these restrictions, we identified just 797 fires for which all variables required by the analysis (w, R and L_f) were available. Nonetheless, this BONFIRE subset spans worldwide and covers a diverse array of fuel types and fuel complexes, as can be seen in Table 1, where the original data sources are indicated.

Fireline intensity and flame length

 $I_{\rm f}$ was computed as per Eqn 1. *H* can be obtained as a fraction of fuel heat of combustion determined in a bomb calorimeter, accounting for the heat losses occurring during outdoors combustion, like moisture vaporisation, incomplete combustion and radiative heat losses by the convection column (Byram 1959). We retrieved average values for the heat of combustion of forest and shrubland fuels (22 111 kJ kg⁻¹) and grass fuels (19 850 kJ kg⁻¹) from Susott (1982). We considered that the fraction of the heat of combustion assumed to be *H* was 0.75, which was roughly the value calculated by Byram (1959) and Nelson and Adkins (1986, 1988). As a result, we obtained H = 16583 kJ kg⁻¹

Fig. 1. Schematic representation of the cross-section of a wind-driven head fire showing flame length (L_f) as considered in the present study, i.e. assessed along its axis from the tip of the flame to the base of the fuel bed.

for forest and shrubland fuels and $H = 14888 \text{ kJ kg}^{-1}$ for grass fuels.

Quantifying precisely how much fuel is consumed in the active flame zone of a field fire is nearly impossible. We therefore adopted the common and reasonable assumption that *w* equals surface fine (<6 mm thickness) fuel load (live and dead) and that most of the consumption of coarser fuels (when existent) occurs in the form of residual or glowing combustion and, therefore, has a minor contribution to the flame generated at the fire front (Alexander 1982).

Although $L_{\rm f}$ is typically measured above the fuel bed by default (Alexander 1982), Eqn 2 uses $L_{\rm f}$ measured from the base of the fuel bed, being assessed from the tip of the flame along its axis (Fig. 1). Because in many fires flame angle was not provided, we estimated L_f by adding fuel height h, instead of h/sin(flame angle), to the reported flame length. With increasing wind or slope, flames tilt towards the unburned fuel, flame angle diminishes and $L_{\rm f}$ becomes progressively underestimated. However, because $L_{\rm f}$ is expected to increase, the error also becomes less significant. The number of fires was unevenly distributed across the I_f range, with many more low-I_f fires. For this reason, for each vegetation type, we ordered the experiments by increasing If, grouped the fires into 100 kW m^{-1} bins ([0–100], [100–200], etc.) and averaged $L_{\rm f}$ and If within those groups to obtain a better distribution of data points across the $I_{\rm f}$ range, and thus more reliable fits.

Data analysis

Coefficients *a* and *b* were determined by fitting the logtransformed form of Eqn 2 by least-squares (e.g. Cheney *et al.* 2012). We fitted Eqn 2 using the full dataset and examined the effect of vegetation type (forest, shrubland, grassland) as a categorical variable (significant at P < 0.05) to probe for the possibility of using the same coefficients for more than one fuel complex, and we proceeded with model development based on the results from this analysis. The bias from model back-transformation was corrected according to Snowdon (1991).

Predictions were evaluated based on the coefficient of determination (R^2), root mean square error (RMSE), mean absolute error (MAE) and mean bias error (MBE). Residuals were checked for normality with the Shapiro–Wilk test (P > 0.05) or, when significance was below the threshold value, for approximate normality by visually inspecting their histograms. Independence from predicted values was evaluated by correlation analysis. We determined the reciprocals of the developed models (L_f as a function of I_f). We also plotted Byram's (1959) $L_f - I_f$ relationship with the present models for a graphical comparison.

Results

Parameter ranges and data points

The wide span in fuel bed structure and flame dimensions inherent to the dataset can be inferred from the *h* and $L_{\rm f}$ ranges (Table 1): 0.1–1.0 m and 0.1–8.9 m for forest (n = 406), 0.16–4.8 m and 0.5–16.7 m for shrubland (n = 207) and 0.04–0.9 m and 0.2–6 m for grassland (n = 184). Wind speed and slope angle were not reported in all studies. For those who did, ranges were 0.5–22 km h⁻¹ (measured at 1.5–2-m height) and 0–22° in forest, 0.3–33.9 km h⁻¹ and 0–30° in shrubland and 2.5–53.1 km h⁻¹ and 0–7° in grassland. As a result of averaging $L_{\rm f}$ and $I_{\rm f}$ within 100 kW m⁻¹ intervals, the distribution of data points across the $I_{\rm f}$ range became much more balanced. We obtained 45 $L_{\rm f} - I_{\rm f}$ data points for forest, 73 for shrubland and 85 for grassland.

Model development and evaluation

In the joint analysis of the full dataset, vegetation type was significant, yet differences between forest and shrubland

Vegetation type	Broad fuel type (fuel complex)	Reference	Country	n	h (m)	w (kg m ⁻²)	$ ho_{\rm b}$ (kg m ⁻³)	R (m s ⁻¹)	L _f (m)	<i>l</i> _f (kW m ⁻¹)
Forest	Deciduous broadleaf (litter)	Bova and Dickinson (2008)	USA	12	0.02-0.29	0.17-1.05	2.57–9.09	0.01-0.13	1.17–1.44	70–1544
	Deciduous broadleaf (litter + shrub)	Patterson et al. (2005)	USA	3	0.52-1.03	0.50-0.55	0.54–0.99	0.01-0.08	1.09-4.5	107–727
	Eucalypt (litter)	Pinto et al. (2013)	Portugal	22	0.04-0.13	0.33-1.78	6.42-19.36	0.00-0.06	0.18-1.05	18–523
	Eucalypt (litter + grass)	Lacy (2008)	Australia	29	0.1–0.64	0.32-1.26	0.81-8.34	0.00-0.09	0.5–2.54	28-1084
	Eucalypt (litter + grass/shrub)	Gould et al. (2008)	Australia	95	0.01-0.56	0.34-2.15	1.62–72.74	0.00-0.32	0.29-8.94	53–7379
	Long needle conifer (litter)	Botelho et al. (1994)	Portugal	3	0.05-0.06	0.49–0.64	9.63-12.50	0.01-0.02	0.33–0.79	- 9
		Fernandes et al. (2009)	Portugal	32	0.02-0.21	0.28-1.20	4.04-18.00	0.00-0.11	0.14-2.93	29–1220
		Sparks et al. (2017)	USA	9	0.05-0.08	0.20-2.30	2.38-40.35	0.00-0.10	0.31-1.12	22-859
	Long needle conifer (litter + grass)	Fernandes et al. (2009)	Portugal	6	0.21-0.25	0.79–1.53	3.20–6.24	0.01-0.23	1.15-4.36	154–3410
	Long needle conifer (litter + grass/shrub)	Alvarado (1986)	Mexico	38	0.07–0.40	0.09-1.45	0.46-12.57	0.00-0.09	0.16-2.36	9–957
		Fernandes et al. (2009)	Portugal	13	0.27-0.33	0.81-1.21	2.45-3.99	0.01-0.14	1.03-3.70	195–1964
	Long needle conifer (litter + shrub)	Botelho (1996)	Portugal	I	0.19	0.59	3.06	0.01	1.00	99
		Botelho et al. (1994)	Portugal	5	0.21-0.50	0.60-1.29	1.68–3.58	0.01-0.07	0.94–3.18	84–982
		Fernandes et al. (2004)	Portugal	3	0.09–0.45	0.80-2.47	5.48–9.77	0.02-0.10	1.31-4.67	267–2419
		Fernandes et al. (2009)	Portugal	36	0.33-0.61	0.82-1.85	1.83–3.74	0.01-0.13	0.88-4.66	156-2415
		Patterson et al. (2005)	USA	3	0.23-0.61	0.55–0.77	1.26–2.65	0.02-0.14	0.64–3.39	167–1764
		UTAD unpublished data on file	Portugal	7	0.10-0.45	0.48–2.26	2.34–5.02	0.01-0.07	0.61-1.96	192-1249
	Mixed conifer-deciduous (litter)	Norton-Jansen (2005)	USA	3	0.05-0.09	0.75-0.81	8.23-15.55	0.02-0.03	0.34–0.55	253-346
	Mixed conifer–deciduous (litter + shrub)	Norton-Jansen (2005)	USA	3	0.17-0.20	1.32–1.56	6.79–9.33	0.02-0.07	1.08–1.57	442–1473
	Short needle conifer (litter)	Lawson (1972)	Canada	8	0.02	0.97	49.43	0.01	0.35–0.87	90-212
	Short needle conifer (litter + moss/lichen)	Lawson (1972)	Canada	20	0.02	0.77–0.97	35.5-49.43	0.00-0.03	0.11–1.85	60–529
	Conifer slash (slash)	Kucuk et al. (2008)	Turkey	30	0.10-0.38	0.64-4.99	4.57-17.08	0.00-0.05	0.20-2.58	36-4273
		Brown (1972)	USA	25	0.16-0.89	0.54-2.10	1.85–7.41	0.00-0.04	0.33–2.87	15-1308
Shrubland	Deciduous shrub (litter + shrub)	Patterson et al. (2005)	USA	3	0.20-0.84	0.54-0.65	0.67-2.77	0.01-0.07	0.47-1.97	93–672
	Evergreen shrub (grass + shrub)	Anderson et al. (2015)	Australia	2	0.40	1.62-1.62	4.05-4.05	0.13-0.14	8.30-8.30	3582-3716

Table I. Data sources and ranges for fuel metrics and fireline intensity.

(Continued on next page)

 Table I.
 (Continued)

Vegetation type	Broad fuel type (fuel complex)	Reference	Country	n	h (m)	w (kg m ⁻²)	$ ho_{\rm b}~({\rm kg~m^{-3}})$	R (m s ⁻¹)	L _f (m)	<i>l</i> _f (k₩ m ⁻¹)
		Anderson et al. (2015)	New Zealand	П	0.30–2.50	0.10-2.22	0.12-1.17	0.02–0.42	1.30–9.90	99–15 326
		Marsden-Smedley and Catchpole (1995)	Australia	85	0.20-0.50	0.37–2.51	1.52–6.28	0.00–0.24	0.70-10.91	37–4905
	Evergreen shrub (litter/ moss + shrub)	Davies and Legg (2011)	Scotland	19	0.16-0.45	0.72–1.67	3.34–5.38	0.01-0.20	0.59–3.30	159-4337
	Evergreen shrub (shrub)	Anderson et al. (2015)	Australia	13	0.25-4.80	0.30–3.82	0.20-3.53	0.05-0.43	1.85-16.70	249–27 127
		Anderson et al. (2015)	New Zealand	15	0.60–3.60	1.16-4.81	0.57–3.22	0.14-0.45	3.10-14.10	3620–25 259
		Anderson et al. (2015)	Portugal	19	0.28-1.90	0.53–2.79	0.86–3.00	0.01-0.33	1.20-7.80	130-10 061
		Fernandes (2001)	Portugal	6	0.46-0.63	1.74-4.09	3.63–6.89	0.07–0.15	3.68–5.46	2540–7340
		Van Wilgen <i>et al.</i> (1985)	South Africa	6	0.84–1.15	0.59–1.48	0.51-1.54	0.21–0.47	2.86–5.35	3015–9064
	Open evergreen shrub (grass + shrub)	Bushey (1985)	USA	6	1.32–2.29	0.05–0.29	0.03–0.20	0.03–0.55	1.72–3.97	24–2677
	Open evergreen shrub (shrub)	McCaw (1997)	Australia	17	0.21-2.40	0.48–1.67	0.52–2.44	0.02-0.72	0.65-13.4	9– 4 737
	Open evergreen shrub (shrub)	Van Wilgen et al. (1985)	South Africa	5	1.00-1.23	1.05–1.70	0.94–1.38	0.0 4 –0.55	2.61–7.57	752–15 524
Grassland	Cereal stubble (grass)	New Zealand Forest Research (2002)	New Zealand	27	0.10-0.50	0.19–0.75	0.94–1.97	0.27-1.78	0.62–6.00	1029–17 065
	Grass (grass)	Van Wilgen and Wills (1988)	South Africa	10	0.44	0.37–0.37	0.85–0.85	0.04-1.00	1.44-4.94	231–5562
		Clark (1983)	USA	60	0.04–0.57	0.10-0.89	0.75-4.80	0.01-0.92	0.15-4.76	52-10 492
		Cruz et al. (2018)	Australia	14	0.29–0.90	0.67-1.04	0.85–2.83	0.37-1.18	3.00-5.23	5233-14 890
		Hély et al. (2003)	Zambia	8	0.20-0.44	0.36–0.60	0.89–1.82	0.02-1.76	0.50-4.61	106-9590
		Kunst et al. (2001)	Argentina	7	0.36-0.66	0.20-0.78	0.55-1.20	0.21-0.56	4.00-4.91	630–6427
		Pearce et al. (2009)	New Zealand	4	0.48–0.56	3.25–3.76	6.63–7.56	0.10-0.14	2.48-3.02	5458–7641
		Sneeuwjagt and Frandsen (1977)	USA	42	0.09–0.53	0.04–0.47	0.44–2.33	0.00-1.02	0.21–3.58	I-6353
	Grass (grass + shrub)	Kunst et al. (2001)	Argentina	12	0.45	0.66-1.24	1.47-2.75	0.23-0.70	2.10-3.95	2864-12219

Variables used are: h (m), fuel bed height; w (kg m⁻²), fine fuel load; ρ_b (kg m⁻³), fuel bed density; R (m s⁻¹), fire spread rate; L_f (m), average flame length; l_f (kW m⁻¹), fireline intensity.

were small, with the confidence interval estimates for the latter totally included within the confidence interval for the former, so we separately fitted Eqn 2 to forest-shrubland data and to grassland data. The back-transformed forest-shrubland equation (Fig. 2) accounted for 76.6% (Table 2) of the existing variability, with an MAE of 1812 kW m^{-1} . The explanation of variability (82.1%) was higher for grasslands (Fig. 3) and MAE was slightly lower (1734 kW m^{-1}) . MBE was approximately zero in both cases. Residuals were approximately normally distributed for forest-shrubland, normally distributed for grassland, and weakly correlated with predicted values. Reciprocals of Eqn 2 are $L_{\rm f} = 0.04001 \ I_{\rm f}^{0.5846}$ for forest-shrubland and $L_f = 0.03888 \ I_f^{0.5111}$ for grassland. Byram's (1959) equation is $L_f = 0.0775 I_f^{0.46}$; its reciprocal yields similar results to the equation derived for grassland (Fig. 4) but severely, and increasingly, overestimates $I_{\rm f}$ for flames longer than $\sim 2 \text{ m}$ in forest and shrubland.

Discussion

Model performance and influence of fuel properties

The $L_{\rm f} - I_{\rm f}$ models performed well, explaining about 80% of the observed variability and providing unbiased estimates. In forest and shrubland fires, $I_{\rm f}$ can be estimated from $L_{\rm f}$ using the same empirical relationship. Fires in grassland need different fitted coefficients, thus revealing differences in flame characteristics, which have already been noted by Cheney (1990). However, $L_{\rm f}$ scales approximately with the square root of $I_{\rm f}$ in both cases, as expected from theory (Nelson 1980).

Fuel consumption will not exactly equal fine fuel load. Consequently, $I_{\rm f}$ calculation with the latter in lieu of the former is expected to introduce uncertainty when fitting a $L_{\rm f} - I_{\rm f}$ relationship, but judging from model evaluation statistics, this simplification was not an influent factor. The wide data range in w and fuel bed density ($\rho_{\rm b}$), shown by their interquartile ranges for forest (0.66- 1.3 kg m^{-2} , 2.9–11.0 kg m⁻³), shrubland (0.76–1.7 kg m⁻², $1.3-3.7 \text{ kg m}^{-3}$) and grassland (0.25-0.67 kg m⁻², 1.0- 2.0 kg m^{-3}), and the fact that these metrics are not required as predictors to produce accurate $L_{\rm f} - I_{\rm f}$ models, leaves no doubt about their reduced influence on flame structure. Also, it is reasonable to assume that variation in fuel bed structure descriptors (like h, w and $\rho_{\rm b}$) would similarly affect flame properties in forest-shrubland or grassland. On the other hand, a fuel metric that fundamentally distinguishes forest-shrubland and grassland, and significantly influences R, is the surface area-to-mass ratio of the fuel particles ($S_{\rm m}$) (Rossa and Fernandes 2018*a*). *R* increases with S_m , which is much higher for grassland. In fact, the S_m of mediterranean forest-shrubland foliage follows a normal distribution, with an average value of $8.2 \text{ m}^2 \text{ kg}^{-1}$, contrasting with the much

higher values of 20–40 m² kg⁻¹ observed for herbaceous fuels (Rossa and Fernandes 2018*b*).

 $L_{\rm f}$ is a visible manifestation of the hot combustion gases, and the chemical composition of wildland fuels is very similar, thus producing little variation between H values. Thus, the same 'amount of flame' should be produced for the same $I_{\rm f}$, regardless of the fuel bed. Contrasting $S_{\rm m}$ fuels will produce structurally different flames, which seem to become more compact as S_m increases. Additional evidence supports this idea: based on laboratory experiments in conifer slash fuel, Anderson et al. (1966) obtained an $L_f - I_f$ relationship that predicts $L_f = 10 \text{ m}$ to yield $I_f = 2000 \text{ kW m}^{-1}$, whereas our models result in $L_f = 4 \text{ m}$ for forest-shrubland (Fig. 2a) and $L_f = 2 \text{ m}$ for grassland (Fig. 3*a*). Even the thinnest woody fuels within a slash fuel bed have very low S_m ; for example, a 4 mm round eucalypt twig will have $S_{\rm m} = 1.5 \,\mathrm{m^2 \, kg^{-1}}$, contrasting with typical values of $8.2 \text{ m}^2 \text{ kg}^{-1}$ for foliar fuels and $30 \text{ m}^2 \text{kg}^{-1}$ for grass fuels (Rossa and Fernandes 2018b).

Model applicability and application

Although our models performed better within the fire behaviour range most commonly associated to surface fire spread, say up to an $I_{\rm f}$ of 4000 kW m⁻¹, a relevant feature of the fitted equations is the inclusion of high-intensity fire data in their development. For more flammable fuel complexes, namely tall shrublands and forests with a well-developed woody understorey, this is expected to improve $L_{\rm f}$ or $I_{\rm f}$ estimates over those afforded by the previously available relationships. Flame size quantification in forest crown fires is scarce, but a cursory inspection of the predictive ability of our $L_{\rm f} - I_{\rm f}$ relationship in such cases is warranted. Flame height data is available for five active crown fires in jack pine stands in Canada (Stocks et al. 2004; Butler et al. 2004a), for which mean If varied between 39 896 and 78 533 kW m⁻¹, calculated as previously described. Assuming that $L_{\rm f}$ equals flame height, i.e. inputting underestimates of $L_{\rm f}$, our $L_{\rm f} - I_{\rm f}$ equation estimates $I_{\rm f}$ with a mean absolute percentage error of 13.2% (range 1.8-35.2%), which is encouraging.

Beyond the already mentioned putative S_m effect, the supposed influence of fuel structure or other fuel bed-specific effects on fire behaviour properties does not preclude generic $L_f - I_f$ relationships from producing useful estimates, especially for operational fire management purposes. For low- I_f fires, MAE represents a greater percentage of the observed I_f values. Thus, the present models are more appealing for use in high- I_f fires ($> \sim 2000 \text{ kW m}^{-1}$), which typically occur under low fuel moisture content and strong winds (high R) in tall fuel complexes (high w). To obtain accurate I_f relationships may be a better option. Finally, different $L_f - I_f$ relationships have been reported for backing and heading fires in the same fuel type (Clark 1983; Fernandes *et al.* 2009). The L_f of fires spreading under

Fig. 2. Eqn 2 fit and evaluation for forest-shrubland after back transformation: (*a*) Fireline intensity (l_f) as a function of flame length (L_f), dashed lines are the 95% CI; and (*b*) observed vs predicted l_f values. Fitted coefficients and evaluation metrics are given in Table 2.

Table 2. Coefficients and evaluation metrics for Eqn 2 after back-transformation.

Vegetation type	n data points	а	Ь	R ²	RMSE (kW m ^{−1})	MAE (kW m ⁻¹)	MBE (kW m ⁻¹)
Forest-shrubland	118	246.0 (186.9–323.9)	1.711 (1.536–1.885)	0.766	2689	1812	0
Grassland	85	574.2 (468.9–703.1)	1.956 (1.757–2.156)	0.821	2368	1734	0

95% confidence intervals for fitted coefficients a and b are shown in parenthesis. R^2 , coefficient of determination; RMSE, root mean square error; MAE, mean absolute error; MBE, mean bias error.

Fig. 3. Eqn 2 fit and evaluation for grassland after back-transformation: (*a*) Fireline intensity (I_t) as a function of flame length (L_t), dashed lines are the 95% CI; and (*b*) observed vs predicted I_t values. Fitted coefficients and evaluation metrics are given in Table 2.

calm conditions theoretically scales with the 2/3 power of $I_{\rm f}$ (Fons *et al.* 1963; Thomas 1963; Albini 1981), which also applies to fires backing into the wind (Nelson 1980). Consequently, our $L_{\rm f} - I_{\rm f}$ relationships should not be extrapolated to backing fires.

The $L_{\rm f} - I_{\rm f}$ relationships can be applied for various purposes and in different ways. The reciprocals of Eqn 2 can be integrated in fire behaviour prediction schemes to produce estimates of $L_{\rm f}$ from $I_{\rm f}$ whenever the former is a variable of interest, e.g. in the frame of fire suppression and firebreak construction (Alexander 2000), or for fire hazard or fire risk assessment and mapping (e.g. Thompson *et al.* 2011).

The usefulness of $I_{\rm f}$ estimates is thoroughly covered by Alexander and Cruz (2020). Estimation of $I_{\rm f}$ from $L_{\rm f}$ is expedient when the latter can be measured or calculated based on visual observation, either during or after the fire. If firespread rate is concurrently assessed, fine fuel consumption can be estimated as well (as per Eqn 1), without the need for destructive pre-burn and post-burn sampling, which is relevant for prescribed burning operations and fire effects studies. Estimates by personnel in the fireline can thus assist decision-making during fire control or fire use operations and can be used to anticipate fire effects such as crown scorch height and tree mortality. Likewise, post-fire surveys

Fig. 4. Graphical representation of Byram's (1959) fireline intensity (l_f) -flame length (L_f) relationship $(l_f = 259.8 L_f^{2.174})$ and the corresponding models developed in the present study (Table 2).

are able to translate fire effects in terms of the associated fireline intensity, which is useful for prescribed burning monitoring and wildfire study cases.

Comparison with Byram's relationship

The pioneer $L_{\rm f} - I_{\rm f}$ relationship of Byram (1959) is the best known and most widely used. Oddly, although Byram's model is most commonly viewed as applicable to surface heading fires (Nelson 1980; Alexander and Cruz 2012), it was presumably based mostly on backing fires (34 out of a total of 41). Interestingly, it was derived from outdoor fires in a forest fuel type with a grass component, which might explain why it compares better with our grassland equation instead of that for forest–shrubland. Our results highlight the inadequacy of using the Byram (1959) model for forest and shrubland fires with $L_{\rm f}$ above ~2 m, consistent with the findings of recent laboratory experiments (Finney and Grumstrup 2023).

Rothermel (1991) stated that Byram's equation severely underestimates the L_f of crown fires, and as such, recommended the more realistic equation of Thomas (1963), where L_f is proportional to $I_f^{0.67}$, as in the equation of Butler *et al.* (2004*b*) for crown-fire L_f . The $L_f - I_f$ relationship for the forest–shrubland variant displays b = 0.58, midway of the coefficients of Byram (b = 0.46) and Thomas. This may be an outcome of the substantial presence in the dataset of high-intensity observations in fuel complexes dominated by an elevated and aerated component, either in shrubland or in forest.

Study relevance

The discrepancies between previous results suggesting that generic $L_{\rm f} - I_{\rm f}$ functions are unviable (Alexander and Cruz 2012) are most likely explained by the following reasons: (1) individual studies are usually limited in the number of fires and observed $I_{\rm f}$ range, which may lead to substantial differences in predicted values when models are extrapolated much beyond the development data range; (2) flame pulsation makes $L_{\rm f}$ evaluations subjective and originates

discrepancies between measurements taken in real time or using video images (allowing for a visual average) and measurements based on photographs (capturing a single snapshot); and (3) most studies do not specify how the flame is measured and lack a standard method of measurement. We advocate that L_f should be assessed from the fuel base level to enable comparability between fires in different fuel heights and adequacy to heat transfer modelling (Nelson and Adkins 1986; Anderson *et al.* 2006), whereas Alexander (1982) proposes measuring L_f from the flame-depth midpoint at the fuel surface level to the tip of the flame.

 $I_{\rm f}$ is a versatile fire metric that can be used for a wide variety of purposes; it can be estimated from $L_{\rm f}$, and vice versa. Although $L_{\rm f}$ assessment is subjective and greatly depends on its definition and mode of observation and calculation, it is a readily apparent descriptor (Rothermel 1991) and therefore practical to use. Particular situations may benefit from the use of fuel bed-specific $L_{\rm f} - I_{\rm f}$ relationships to assure increased accuracy of I_f estimates, e.g. for prescribed burning planning purposes for which the most accurate relationships between fire behaviour and fire effects are required (Fernandes et al. 2012; Hiers et al. 2020). However, deriving specific models for all existing fuel complexes is not feasible. As a consequence, the generic relationships developed in the present study will be of interest in many situations. Moreover, our results are based on a great amount of data from very diverse literature sources reporting field fires conducted worldwide - in a wide range of fuel species, vegetation structure, wind speed, slope angle and flame dimensions, and thus are robust.

Conclusions

We found that the generic description of I_f from L_f should be based on different functions for forest–shrubland and for grassland fires, and we speculate that S_m is the main fuel metric influencing flame structure. Mean L_f must be assessed from the base of the fuel bed for comparability between fires burning in fuel beds with different depths. The absence of standards to assess L_f , and the fact that many studies do not specify if the measure is taken from the base or the top of the fuel bed, has likely contributed to some of the discrepancies among previous results, which suggested fuel-specific relationships are unfeasible. Because I_f is a frequently used fire metric and developing specific models for all existing fuel complexes is not practical, the generic relationships presented in this work will be of interest for both research and management purposes, namely in higher-intensity surface fires.

List of symbols, units and definitions

a and b	fitted coefficients
<i>h</i> (m)	fuel bed height
H (kJ kg ⁻¹)	heat yield per unit mass of fuel

$I_{\rm f} ({\rm kW}{\rm m}^{-1})$	fireline intensity
<i>L</i> _f (m)	average flame length (measured from the
	base of the fuel bed, unless otherwise specified)
$R (m s^{-1})$	fire spread rate
$S_{\rm m} ({\rm m}^2{\rm kg}^{-1})$	surface area-to-mass ratio of the fuel particles
$w (\mathrm{kg}\mathrm{m}^{-2})$	fuel load consumed by flaming combustion
	(approximated to fine fuel load)
$ ho_{\rm b}$ (kg m ⁻³)	fuel bed density

References

- Albini FA (1981) A model for the wind-blown flame from a line fire. Combustion and Flame 43, 155–174. doi:10.1016/0010-2180(81) 90014-6
- Alexander ME (1982) Calculating and interpreting forest fire intensities. Canadian Journal of Botany 60, 349–357. doi:10.1139/B82-048
- Alexander ME (2000) 'Fire behaviour as a factor in forest and rural fire suppression'. Forest Research, Rotorua, in association with the National Rural Fire Authority, Wellington. Forest Research Bulletin No. 197, Forest and Rural Fire Scientific and Technical Series, Report No. 5. (Forest Research Institute, New Zealand Forest Service.)
- Alexander ME, Cruz MG (2012) Interdependencies between flame length and fireline intensity in predicting crown fire initiation and crown scorch height. *International Journal of Wildland Fire* **21**, 95–113. doi:10.1071/WF11001
- Alexander ME, Cruz MG (2020) Fireline intensity. In 'Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires'. (Ed. SL Manzello) pp. 453–460. (Springer, Cham: Switzerland)
- Alvarado E (1986) Threshold requirements for fire spread in grassland fuels. MSc thesis, Colegio de Postgraduados, Institucion de Ensenanza e Investigacion en Ciencias Agricolas, Montecillo, Mexico.
- Anderson HE, Brackebusch AP, Mutch RW, Rothermel RC (1966) Mechanisms of fire spread research progress report 2. Research Paper INT-28. (USDA Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT)
- Anderson W, Pastor E, Butler B, Catchpole E, Dupuy JL, Fernandes PM, Guijarro M, Mendes-Lopes JM (2006) Evaluating models to estimate flame characteristics for free-burning fires using laboratory and field data. In 'Proceedings of 5th International Conference on Forest Fire Research', Figueira da Foz, Portugal, 27–30 November 2006. (Ed. DX Viegas) (Elsevier BV: Amsterdam, The Netherlands)
- Anderson WR, Cruz MG, Fernandes PM, McCaw L, Vega JA, Bradstock RA, Fogarty L, Gould J, McCarthy G, Marsden-Smedley JB, Matthews S, Mattingley G, Pearce HG, van Wilgen BW (2015) A generic, empirical-based model for predicting rate of fire spread in shrublands. *International Journal of Wildland Fire* 24, 443–460. doi:10.1071/WF14130
- Andrews PL (2018) The Rothermel surface fire spread model and associated developments: A comprehensive explanation. General Technical Report RMRS-GTR-371. (USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO)
- Botelho H (1996) Efeitos do fogo controlado em árvores de povoamentos jovens de Pinus pinaster Ait. PhD thesis, Universidade de Trás-os-Montes e Alto Douro, Vila Real. [In Portuguese]
- Botelho H, Vega JA, Fernandes PM, Rego FC (1994) Prescribed fire behavior and fine fuel consumption in Northern Portugal and Galiza maritime pine stands. In 'Proceedings of the Second International Conference on Forest Fire Research. Vol. 1', 21–24 November 1994. pp. 343–353. (Universidade de Coimbra)
- Bova AS, Dickinson MB (2008) Beyond 'fire temperatures': calibrating thermocouple probes and modeling their response to surface fires in hardwood fuels. *Canadian Journal of Forest Research* **38**, 1008–1020. doi:10.1139/x07-204
- Brown J (1972) Field test of a rate-of-fire-spread model in slash fuels. Research Paper INT-116. (USDA Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT)
- Burrows ND (1994) Experimental development of a fire management model for jarrah (*Eucalyptus marginata* Donn ex Sm.) forest. PhD thesis, Australian National University, Canberra.
- Bushey CJ (1985) Comparison of observed and predicted fire behavior in the sagebrush/bunchgrass vegetation type. In 'Fire Management:

The Challenge of Protection and Use, Proceedings of a Symposium'. (Ed. J.N. Long) pp. 187–201. (Utah State University: Logan, UT)

- Butler BW, Cohen J, Latham DJ, Schuette RD, Sopko P, Shannon KS, Jimenez D, Bradshaw LS (2004a) Measurements of radiant emissive power and temperatures in crown fires. *Canadian Journal of Forest Research* 34, 1577–1587. doi:10.1139/x04-060
- Butler BW, Finney MA, Andrews PL, Albini FA (2004b) A radiationdriven model of crown fire spread. *Canadian Journal of Forest Research* 34, 1588–1599. doi:10.1139/X04-074
- Byram GM (1959) Combustion of forest fuels. In 'Forest Fire: Control and Use'. (Ed. KP Davis) pp. 61–89, 554–555. (McGraw-Hill: New York, NY)
- Byram GM, Nelson RM (1970) The modeling of pulsating fires. *Fire Technology* **6**, 102–110. doi:10.1007/BF02588896
- Catchpole WR, Bradstock RA, Choate J, Fogarty LG, Gellie N, McCarthy G, McCaw WL, Marsden-Smedley JB, Pearce G (1998) Cooperative development of equations for heathland fire behaviour. In 'Proceedings of 3rd International Conference on Forest Fire Research and 14th Conference on Fire and Forest Meteorology. Vol. II', 16–20 November 1998, Luso–Coimbra, Portugal. (Ed. DX Viegas) pp. 631–645. (University of Coimbra: Coimbra, Portugal)
- Cheney NP (1990) Quantifying bushfires. Mathematical and Computer Modelling 13, 9-15. doi:10.1016/0895-7177(90)90094-4
- Cheney NP, Gould JS, McCaw WL, Anderson WR (2012) Predicting fire behaviour in dry eucalypt forest in southern Australia. Forest Ecology and Management 280, 120–131. doi:10.1016/J.FORECO.2012. 06.012
- Clark RG (1983) Threshold requirements for fire spread in grassland fuels. PhD thesis, Texas Tech University, Lubbock, USA. 72 p.
- Cruz MG, Sullivan AL, Gould JS, Hurley RJ, Plucinski MP (2018) Got to burn to learn: the effect of fuel load on grassland fire behaviour and its management implications. *International Journal of Wildland Fire* 27, 727–741. doi:10.1071/WF18082
- Davies GM, Legg CJ (2011) Fuel Moisture Thresholds in the Flammability of Calluna vulgaris. *Fire Technology* **47**, 421–436. doi:10.1007/s10694-010-0162-0
- Dupuy JL, Maréchal J, Portier D, Valette JC (2011) The effects of slope and fuel bed width on laboratory fire behaviour. *International Journal of Wildland Fire* **20**, 272–288. doi:10.1071/WF09075
- Fernandes PAM (2001) Fire spread prediction in shrub fuels in Portugal. Forest Ecology and Management 144, 67–74. doi:10.1016/S0378-1127(00)00363-7
- Fernandes PM, Catchpole WR, Rego FC (2000) Shrubland fire behaviour modelling with microplot data. Canadian Journal of Forest Research 30, 889–899. doi:10.1139/X00-012
- Fernandes PAM, Loureiro CA, Botelho S (2004) Fire behaviour and severity in a maritime pine stand under differing fuel conditions. *Annals of Forest Science* **61**, 537–544. doi:10.1051/forest:2004048
- Fernandes PM, Botelho HS, Rego FC, Loureiro C (2009) Empirical modelling of surface fire behaviour in maritime pine stands. *International Journal of Wildland Fire* **18**, 698–710. doi:10.1071/ WF08023
- Fernandes PM, Loureiro C, Botelho H (2012) PiroPinus: a spreadsheet application to guide prescribed burning operations in maritime pine forest. *Computers and Electronics in Agriculture* **81**, 58–61. doi:10.1016/j.compag.2011.11.005
- Fernandes PM, Sil A, Rossa CG, Ascoli D, Cruz MG, Alexander ME (2020) Characterizing Fire Behavior Across the Globe. In: 'The Fire Continuum—Preparing for the Future of Wildland Fire: Proceedings of the Fire Continuum Conference', 21–24 May 2018, Missoula, MT. (Tech. Eds S Hood, S Drury, T Steelman, R Steffens) Proc. RMRS-P-78. pp. 258–263. (Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station)
- Finney MA, Grumstrup TP (2023) Effect of flame zone depth on the correlation of flame length with fireline intensity. *International Journal of Wildland Fire* **32**, 1135–1147. doi:10.1071/WF22096
- Fons WL, Clements HB, George PM (1963) Scale effects on propagation rate of laboratory crib fires. *Symposium (International) on Combustion* 9, 860–866. doi:10.1016/S0082-0784(63)80092-2
- Gould JS, McCaw WL, Cheney NP, Ellis PE, Knight IK, Sullivan AL (2008) 'Project Vesta - fire in dry eucalypt forest: fuel structure, fuel dynamics, and fire behaviour.' (Ensis - CSIRO and Department of Environment and Conservation: Canberra, ACT and Perth, WA)

- Hély C, Alleaume S, Swap RJ, Shugart HH, Justice CO (2003) SAFARI-2000 characterization of fuels, fire behavior, combustion completeness, and emissions from experimental burns in infertile grass savannas in western Zambia. *Journal of Arid Environments* 54, 381–394. doi:10.1006/jare.2002.1097
- Hiers JK, O'Brien JJ, Varner JM, Butler BW, Dickinson M, Furman J, Gallagher M, Godwin D, Goodrick SL, Hood SM, Hudak A, Kobziar LN, Linn R, Loudermilk EL, McCaffrey S, Robertson K, Rowell EM, Skowronski N, Watts AC, Yedinak KM (2020) Prescribed fire science: the case for a refined research agenda. *Fire Ecology* 16, 11. doi:10.1186/S42408-020-0070-8
- Hirsch KG, Martell DL (1996) A review of initial attack fire crew productivity and effectiveness. *International Journal of Wildland Fire* **6**, 199–215. doi:10.1071/WF9960199
- Johnson VJ (1982) The dilemma of flame length and intensity. Fire Management Notes 43, 3–7.
- Kucuk O, Bilgili E, Saglam B, Baskaya S, Dinc Durmaz B (2008) Some parameters affecting fire behavior in anatolian black pine slash. *Turkish Journal of Agriculture and Forestry* 32, 121–129. doi:10.3906/tar-0709-15
- Kunst C, Bravo S, Moscovich F, Herrera J, Godoy J, Velez S (2001) Control de tusca (Acacia aroma Gill ap. H. et A.) mediante fuego prescripto. *Revista Argentina de Producción Animal* **20**, 199–213. [In Spanish]
- Lacy P (2008) Burning Under Young Eucalypts. PhD thesis, University of New South Wales, Sydney, Australia.
- Lawson B (1972) 'Fire spread in lodgepole pine.' (Environment Canada, Canadian Forestry Service, Pacific Forest Research Centre: Victoria, BC)
- Marsden-Smedley J, Catchpole W (1995) Fire Behaviour Modelling in Tasmanian Buttongrass Moorlands: II. Fire Behaviour. *International Journal of Wildland Fire* 5, 215–228. doi:10.1071/wf9950215
- McCaw WL (1997) Predicting fire spread in western australian malleeheath shrubland. PhD thesis, University of New South Wales, Canberra, Australia. 249 p.
- Nelson RM (1980) Flame characteristics for fires in southern fuels. Research Paper SE-205. (USDA Forest Service, Southeastern Forest Experiment Station: Asheville, NC)
- Nelson Jr RM, Adkins CW (1986) Flame characteristics of wind-driven surface fires. *Canadian Journal of Forest Research* **16**, 1293–1300. doi:10.1139/X86-229
- Nelson Jr RM, Adkins CW (1988) A dimensionless correlation for the spread of wind-driven fires. *Canadian Journal of Forest Research* 18, 391–397. doi:10.1139/x88-058
- New Zealand Forest Research (2002) 'Fire Research Update, June 2002.' (Fire Research Programme Forest Research: Christchurch)
- Norton-Jansen J (2005) 'The Effects of Brush Cutting and Burning on Fuel Beds and Fire Behavior in Pine-Oak Forests of Cape Cod National Seashore.' FOREST 698: PRACTICUM. 48 p. (Department of Natural Resources Conservation University of Massachusetts at Amherst)
- Patterson III WA, Clarke G, Haggerty S, Sievert P, Kelty M (2005) Wildland Fuel Management Options for the Central Plains of Martha's Vineyard: Impacts on Fuel Loads, Fire Behavior and Rare Plant and Insect Species. pp. 1–140. (Department of Natural Resources Conservation, University of Massachusetts: Amherst)
- Pearce HG, Anderson SJ, Payton IJ (2009) Fire behaviour as a determinant of fire effects in tussock grasslands: Comparison of fire behaviour associated with experimental burns conducted to assess fire effects. Client Report No. 15029. (SCION, Rural Fire Research Group: Christchurch, New Zealand)
- Pinto A, Fernandes PM, Espinosa-Prieto J (2013) FIREglobulus: Estudo Experimental do Comportamento e Efeitos do Fogo em Eucaliptal. *Silva Lusitana* **21**, 143–155. [In Portuguese]

- Rossa CG, Fernandes PM (2018*a*) An empirical model for the effect of wind on fire spread rate. *Fire* **1**, 31. doi:10.3390/fire1020031
- Rossa CG, Fernandes PM (2018b) Empirical modelling of fire spread rate in no-wind and no-slope conditions. *Forest Science* **64**, 358–370. doi:10.1093/forsci/fxy002
- Rothermel RC (1991) Predicting behavior and size of crown fires in the Northern Rocky Mountains. Research Paper INT-438. (USDA Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT)
- Rothermel RC, Deeming JE (1980) Measuring and interpreting fire behaviour for correlation with fire effects. General Technical Report INT-93. (USDA Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT)
- Sneeuwjagt RJ, Frandsen WH (1977) Behavior of experimental grass fires vs. predictions based on Rothermel's fire model. *Canadian Journal of Forest Research* 7, 357–367. doi:10.1139/x77-045
- Snowdon P (1991) A ratio estimator for bias correction in logarithmic regressions. *Canadian Journal of Forest Research* **21**, 720–724. doi:10.1139/X91-101
- Sparks AM, Smith AMS, Talhelm AF, Kolden CA, Yedinak KM, Johnson DM (2017) Impacts of fire radiative flux on mature *Pinus ponderosa* growth and vulnerability to secondary mortality agents. *International Journal of Wildland Fire* 26, 95–106. doi:10.1071/WF16139
- Stocks BJ, Alexander ME, Wotton BM, Stefner CN, Flannigan MD, Taylor SW, Lavoie N, Mason JA, Hartley GR, Maffey ME, Dalrymple GN, Blake TW, Cruz MG, Lanoville RA (2004) Crown fire behaviour in a northern jack pine-black spruce forest. *Canadian Journal of Forest Research* 34, 1548–1560. doi:10.1139/ X04-054
- Susott RA (1982) Characterization of the thermal properties of forest fuels by combustible gas analysis. *Forest Science* **28**, 404–420. doi:10.1093/forestscience/28.2.404
- Thomas PH (1963) The size of flames from natural fires. In 'Proceedings of the 9th Symposium on Combustion', 27 August–1 September 1962, Cornell University, Ithaca, NY. pp. 844–859. (The Combustion Institute: Pittsburgh)
- Thompson MP, Calkin DE, Finney MA, Ager AA, Gilbertson-Day JW (2011) Integrated national-scale assessment of wildfire risk to human and ecological values. *Stochastic Environmental Research and Risk Assessment* 25, 761–780. doi:10.1007/s00477-011-0461-0
- Van Wilgen BW (1986) A simple relationship for estimating the intensity of fires in natural vegetation. *South African Journal of Botany* **52**, 384–385. doi:10.1016/S0254-6299(16)31540-X
- Van Wilgen B, Wills AJ (1988) Fire behaviour prediction in savanna vegetation. South African Journal of Wildlife Research 18, 41–46.
- Van Wilgen BW, Le Maitre DC, Kruger FJ (1985) Fire Behaviour in South African Fynbos (Macchia) Vegetation and Predictions from Rothermel's Fire Model. *Journal of Applied Ecology* 22, 207–216. doi:10.2307/2403338
- Vega JA, Cuinas P, Fonturbel T, Perez-Gorostiaga P, Fernandez C (1998) Predicting fire behaviour in Galician (NW Spain) shrubland fuel complexes. In 'Proceedings of 3rd International Conference on Forest Fire Research and 14th Conference on Fire and Forest Meteorology. Vol. II', 16–20 November 1998, Luso–Coimbra, Portugal. (Ed. DX Viegas) pp. 713–728. (University of Coimbra: Coimbra, Portugal)
- Weber MG, Hummel M, Van Wagner CE (1987) Selected parameters of fire behavior and *Pinus banksiana* Lamb. regeneration in eastern Ontario. Forestry Chronicle 63, 340–346. doi:10.5558/tfc63340-5
- Weise DR, Biging GS (1996) Effects of wind velocity and slope on flame properties. *Canadian Journal of Forest Research* 26, 1849–1858. doi:10.1139/X26-210

Data availability. Data are available upon request from the authors.

Conflicts of interest. Paulo Fernandes is an Associate Editor of the International Journal of Wildland Fire but was blinded from the review process to mitigate the potential conflict of interest.

Declaration of funding. The study was supported by FEDER – Fundo Europeu de Desenvolvimento Regional (funds from COMPETE 2020 – POCI) and by Portuguese funds through FCT- Portuguese Foundation for Science and Technology, project POCI-01-0145-FEDER-016727 (PTDC/AAG-MAA/2656/2014) and project UIDB/04033/2020 (https://doi.org/10.54499/UIDB/04033/2020).

Acknowledgements. The authors thank Jim Gould and Miguel Cruz from the CSIRO Bushfire Behaviour and Suppression Team for supplying the Project VESTA data.

Author affiliations

^ASchool of Technology and Management (ESTG), Polytechnic of Leiria, Apartado 4163, 2411-901 Leiria, Portugal.

^BCentre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal.