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ABSTRACT 

Background. The prediction accuracy for the rate of surface fire spread varies in different regions; 
thus, increasing the prediction accuracy for local fuel types to reduce the destructive consequences 
of fire is critically needed. Aims. The objective of this study is to improve the Rothermel model’s 
accuracy in predicting the ROS for surface fuel burning in planted forests of Pinus koraiensis in the 
eastern mountains of north-east China. Methods. Fuel beds with various fuel loads and moisture 
content was constructed on a laboratory burning bed, 276 combustion experiments were per
formed under multiple slope conditions, and the ROS data from the combustion experiments were 
used to modify the related parameters in the Rothermel model. Results. The surface fire spread 
rate in Pinus koraiensis plantations was directly predicted using the Rothermel model but had 
significant errors. The Rothermel model after modification predicted the following: MRE = 25.09%, 
MAE = 0.46 m min−1, and R2 = 0.80. Conclusion. The prediction accuracy of the Rothermel model 
was greatly enhanced through parameter tuning based on in-lab combustion experiments 
Implications. This study provides a method for the local application of the Rothermel model in 
China and helps with forest fire fighting and management in China.  

Keywords: fuel loads, fuel moisture, modified parameters, Pinus koraiensis, ROS, Rothermel 
model, slope, surface fire. 

Introduction 

The frequency and intensity of forest fires have increased significantly in recent years due 
to human activity and global climate change (Bowman et al. 2017; Xu et al. 2020;  
Yu et al. 2020; Abram et al. 2021), with significant harm to human health and safety, 
wildlife, biodiversity, and ecosystems and substantial effects on the environment, econ
omy, and society (Driscoll et al. 2010; Johnston et al. 2012; Dittrich and McCallum 2020;  
Filkov et al. 2020; Koopmans et al. 2020; Vaiciulyte et al. 2021). Forest fire behaviour 
characteristics refer to all characteristics and actions exhibited by forest fires, including 
fuel ignition, flame growth, fire spread, and extinction. The fire source, fuel, weather, 
and slope combination influence these characteristics and behaviours according to the 
spatial location of occurrence (Canadian Interagency Forest Fire Center 2003; Benali 
et al. 2016; Finney et al. 2021). Forest fires can be divided into underground fires, surface 
fires, and canopy fires (Xue et al. 2022). Low-intensity surface fires can become specific 
fire behaviours, such as high-energy crown fires, under conditions promoting fire spread. 
Large tracts of forest can be burned by quickly spreading, high-energy fires in a short 
amount of time (Manzello 2020). The primary type of forest burning and stage of most 
forest fires are surface fires. The rate of spread is the most critical indicator of the 
behavioural characteristics of forest fires. The rate of surface fire spread (ROS) needs 
to be accurately estimated to reduce the severe effects of forest fires (Gould and 
Sullivan 2020). 
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Fire specialists have developed various models to forecast 
the rate of surface fires that have spread over the past 
100 years. Four categories of predictive models were 
developed and sorted based on how they were created: 
(1) physical; (2) quasi-physical; (3) empirical; and 
(4) quasi-empirical (Weber 1991a, 1991b; Sullivan 2009a,  
2009b). The physical model considers the physical and 
chemical changes in combustion and heat transfer processes. 
In contrast, the quasi-physical model is based solely on heat 
transmission and considers only the physical processes. The 
physical and quasi-physical models have the drawback of 
requiring the input of numerous parameters, and the major
ity of these parameters cannot be measured at the fire site. 
These models also have high computational, data, and 
resource requirements. Therefore, the physical and quasi- 
physical models are not usually used as tools for forest fire 
management. The empirical model uses data from local 
forest fires, prescribed burning, and laboratory combustion 
experiments, as well as a model created by statistical analy
sis of the rate of fire spread under various fuel, weather, and 
slope conditions, completely disregarding the physical and 
chemical changes that occur during fire spread; while the 
quasi-empirical model serves as the foundation for many 
globally used fire spread prediction systems, is framed in 
the physical conservation of energy, incorporates data from 
natural fires and laboratory combustion experiments, and 
uses statistical methods to integrate physical elements with 
historical fire data organically. However, regardless of the 
prediction model employed, the effectiveness of the model 
in its prediction of the fire spread rate is highly important 
(Cruz and Alexander 2013). Fire scholars have studied the 
accuracy of fire spread prediction models and found that the 
model’s applicability, the internal accuracy of the model 
relationships, and the dependability of the input data are 
the leading causes of model prediction errors (Albini 1976a;  
Keane and Reeves 2011; Alexander and Cruz 2013). Model 
applicability is defined as the degree to which the model 
accurately predicts fire behaviour (primarily ROS). All cur
rent fire spread prediction models simulate wildfires, and 
the fire behaviour predicted by these models differs some
what from the actual fire behaviour of wildfires. The 
Rothermel model used to forecast fire behaviour in the 
northern Rocky Mountains, USA contained 18 key assump
tions (Rothermel 1991) . These include the notions that the 
fuel mixture is continuous and homogenous, there are no 
distances between fuels, and ash from flying fires is not 
considered. In this instance, significant error in ROS predic
tion could occur. The fire spread prediction error is strongly 
affected by the internal accuracy of the model relationships 
and the dependability of the input data (Anderson 1982;  
Salvador et al. 2001; Fernandes 2009). This primarily occurs 
because the model parameters (fuel density, moisture, 
weather, and terrain conditions) are typically fixed and mea
sured in a laboratory or on controlled fires. Additionally, 
erroneous observations, imprecise fuel estimates, or irrational 

assumptions can result in significant model prediction errors 
during actual wildfires. 

The Rothermel model is the most popular quasi-empirical 
model (Alibini 1976a; Keane and Reeves 2011; Alexander 
and Cruz 2013). The work of Fons (1946) and Byram 
(1966) is based on the equation described by Frandsen 
(1971) for thermal balance. Information from Australian 
grassland fires and laboratory combustion experiments was 
used to match fire behaviour to measured input variables. 
Since then, the Rothermel model has undergone modifica
tions and extensions from associated academics, and it now 
serves as the foundation for the BehavePlus (Andrews 2007) 
and FARSITE (Finney 1998). Even though the Rothermel 
model is currently widely used, it still has certain limitations 
when predicting the spread rate for various fuel types, slopes, 
and wind speeds (Jimenez et al. 2008; Thompson and Calkin 
2011). To simplify the calculations, Rothermel (1972) treated 
the fuel as a homogeneous bed over a small area and a short 
period. Nonetheless, in a laboratory setting with a reproduc
ible fuel bed and stable environmental conditions, Catchpole 
et al. (1993, 1998) reported up to 20% unexplained variation 
in ROS. The Rothermel model has different abilities for dif
ferent combustible plant types, with moderate prediction 
errors for herbaceous and shrub spread rates and more signif
icant prediction errors for harvesting trails and forest under
storey combustible spread rates, according to the review of 
29 published papers assessing the accuracy of the Rothermel 
model by Cruz et al. (2018a). Benali et al. (2016) used 
FARSITE to forecast eight wildfires in Portugal. They discov
ered that variables including fuel type, weather, and the 
location of fire initiation, significantly impacted how accu
rately FARSITE predicted the rate of fire spread. Dupuy et al. 
(2011) used the Rothermel model to predict fires under 
different bed widths and slope conditions and reported that 
the predicted values were 30% lower than the observed 
values when the bed width was 1 m at a slope of 30°.  
Andrews et al. (2013, 2018) reported that the addition of 
wind limitations to the Rothermel model and the use of the 
same slope parameters for all combustibles could signifi
cantly affect the prediction accuracy. 

Numerous researchers have employed mathematical tech
niques to quantify the uncertainty in the Rothermel model’s 
input parameters to increase the model’s precision in predict
ing spreading rates and simplify the model. Bachmann and 
Allgöwer (2002) analysed the Rothermel model using a first- 
order Taylor series and reported that the uncertainty in the 
input parameters had very significant impacts on the predic
tion error. Salvador et al. (2001) performed global sensitivity 
and scale effects analyses on the Rothermel model, the fuel 
low-heating value, particle density, and mineral content had 
negligible effects on the model prediction error. In contrast, 
all other input variables significantly impacted the prediction 
error. Using sensitivity inverse augmented sampling, Jimenez 
et al. (2008) researched how the uncertainty of the 
Rothermel model’s parameters affects model prediction 
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results. Although it is computationally possible to use mathe
matical techniques to calculate the impact of uncertainty in the 
Rothermel model’s input parameters, Andrews (2014) sug
gested that progress in the model should be made in terms 
of fuel properties, fuel moisture content, and improvements to 
the model using data from natural fires, in-lab combustion 
experiments, and other sources, to improve the prediction 
accuracy of the model for different fire scenarios. Based on 
these findings, several the Rothermel model parameters were 
improved in this work by utilising data on the fire spread rate 
collected from combustion tests in a laboratory combustion 
bed to increase the applicability of the Rothermel model. 

Planted forests are an essential component of forest eco
systems. China currently holds the top spot globally, with 
69.33 million hm2 of planted forests (State Forestry 
Administration 2014). The structure of Chinese plantation 
forests is simple, the main silvicultural species are mostly 
pure coniferous forests rich in oil and grease, the surface 
fuel is the most homogeneous bed, the ability to resist natural 
disasters is low, and a massive risk of forest fire is present 
(Ning et al. 2023). Pinus koraiensis is a vital plantation tree 
with high timber value in northern China. However, because 
of its high withering volume and large amount of oil it 
contains, forest fires can cause significant losses (Zhang and 
Sun 2020). Some parameters in the Rothermel model were 
modified using the P. koraiensis ROS measured in the labo
ratory to increase the prediction accuracy of the Rothermel 
model in predicting the ROS for surface fuel in P. koraiensis 
plantation forests. Our findings could serve as basic data for 
fire researchers, a basis for further research into the science of 
forest fires, and a tool for firefighters in assessing the severity 
of a fire and ensuring public safety. It also provides valuable 
information for developing China’s specific fire behaviour 
prediction system. 

Materials and methods 

The study area is the Maoershan Experimental Forestry Farm 
of Northeast Forestry University, Shangzhi city, Heilongjiang 
Province, China (45°14′–45°29′N, 127°29′–127°44′E); this is 
a branch of the Changbai Mountain System and has an aver
age elevation of approximately 300 m. The area is mainly 
composed of low-altitude hilly and gently sloping terrain with 
85% forest cover. Influenced by the Eurasian continental 
monsoon climate, the region has a temperate climate with 
an average annual temperature of 2.8°C and an average 
annual precipitation of approximately 723.8 mm. The exist
ing vegetation is a natural secondary forest and plantation 
formed by anthropogenic disturbance of the broadleaf Pinus 
koraiensis forest, which is the top zone vegetation, and the 
main tree species are P. koraiensis, Quercus mongolica, 
Betula platyphylla, Larix gmelinii and Juglans mandshurica. 

In August 2022, 12 standard plantation plots (30 m ×  
30 m) of P. koraiensis were set up in the experimental forest. 

Each tree in the plots were examined to determine diameter 
at breast height (DBH), tree height, and crown width. Five 
1-m × 1-m quadrats were established (four in corners and 
one in the centre) in each subplot for the fuel load survey 
(the basic information of the sample site is in Table 1). Many 
P. koraiensis apoplastic leaves were collected in the forest by 
destructive sampling and returned to the laboratory for 
ventilation and preservation in preparation for the burning 
experiments. 

Combustion experiments 

Fuel pre-treatment 
The Forest Fire Behaviour Laboratory of Northeast 

Forestry University is semi-open, 20 m long, 10 m wide, 
and 8 m high, with a roof equipped with passive exhaust 
devices. The combustion experiments were conducted in a 
4-m long and 1.7-m wide variable slope burning bed with a 
slope variation range of 0°–40° and a 4-m long, 1.3-m wide 
area available for combustion (Fig. 1). 

The combustion experiments were carried out in north- 
eastern China during the fall fire season from September to 
October 2022 to better meet the needs of forest fire science 
research. The absolute dry mass of the fuel per unit area is 
called the fuel load. The fuel load in this experiment was set 
to 0.4, 0.8, 1.2 and 1.6 kg m−2, with four levels. 

Pre-experiments indicated that when the fuel moisture 
content of P. koraiensis fuel was 20%, open flame combus
tion of the fuel was difficult to sustain, and a smouldering 
phenomenon occurred. The Rothermel (1972) was estab
lished for the open flame condition of fuel. The fuel moisture 
content was set to 5, 10, and 15%, for a total of three levels, 
to maintain the fuel in the open flame combustion condi
tion. The dry fuel weight and moisture needed for various 
fuel loads and moisture contents were calculated using the 
fuel moisture content calculation formula (Ning et al. 2022). 
The quantitative moisture was then quickly and evenly 
sprayed onto the fuel surface using a spray bottle and then 
immediately transferred to a sealed box for 24 h to allow the 
moisture to be fully absorbed. The preparation for the fuel’s 
moisture content was finished at that point. However, dur
ing the experiments, the fuel still absorbed a small amount 

Table 1. Preliminary information for sample plot.       

Stand information Maximum 
value 

Minimum 
value 

Mean 
value 

s.d.   

Diameter at breast 
high (cm)  

21.8  15.3  18.9  2.3 

Tree height (m)  14.6  9.7  12.2  1.3 

Crown length (m)  8.6  4.6  6.5  1.4 

Crown width (m)  2.9  1.7  2.2  0.4 

Density  1633.0  650.0  1064.8  329.5 

Fuel loads (kg m−2)  1.5  0.5  1.0  0.3   
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of water from the air while configuring the fuel moisture 
content. Moreover, a small amount of unabsorbed water was 
present on the inner surface of the sealed box; thus, the wet 
weight of the fuel was determined before each experiment to 
calculate the actual fuel moisture content (Table 2). The actual 
fuel moisture content data were utilised for Rothermel model 
prediction, while the preset fuel moisture content was used for 
graphical plotting in the text for description. 

The slope setting of this study was set according to actual 
forest fires. Considering that the study area has mostly low 
hills and gently sloping terrain, the slope generally does not 
exceed 35°; thus, the slopes were set to 0°, 10°, 20°, 30°, and 
35° for a total of five levels. 

Laboratory combustion experiments 
Before the start of the combustion experiment, the trea

ted P. koraiensis fuel was uniformly sprinkled on the burn
ing bed in a manner that simulated falling under pine 
needles. The fuel bed dimensions were 4 m × 1 m. The 
fuel depth is a crucial input parameter for the Rothermel 
model, and there is an inevitable error in the fuel depth for 
each layer due to factors such as the fuel’s gravity and 
moisture content. The fuel depth was measured four times 
after each lay-up was finished, and the average value was 
calculated (Table 3). A portable weather station (Kestrel 
4500) was used to record the air temperature and relative 
humidity before the start of each combustion experiment, 
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Fig. 1. (a) Diagram of the experimental device and (b) experimental process (fuel load, 1.2 kg m−2; slope angle, 30°; 
FMC, 10%).    

Table 2. The actual moisture content of the fuel (%).          

Preset moisture 
content (%) 

Maximum 
value 

Minimum 
value 

Mean 
value 

s.d. Percentiles 

25% 50% 75%   

5  7.99  4.42  5.52  0.48  5.27  5.47  5.67 

10  11.80  8.40  10.33  0.52  10.09  10.36  10.59 

15  18.01  14.11  15.34  0.58  15.05  15.22  15.56   

Table 3. Fuel bed depth (cm).          

Fuel load 
(kg m−2) 

Maximum 
value 

Minimum 
value 

Mean 
value 

s.d. Percentiles 

25% 50% 75%   

0.4  3.00  2.03  2.51  0.29  2.25  2.50  2.73 

0.8  5.53  3.57  4.50  0.41  4.19  4.42  4.87 

1.2  7.20  5.30  6.14  0.43  5.80  6.15  6.47 

1.6  9.17  6.97  7.86  0.51  7.46  7.80  8.33   
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and the burning bed was then adjusted to the required slope. 
A volume of 15 mL of anhydrous ethanol was sprayed into 
the ignition tank (1 m × 1 cm) to ignite the fuel before the 
experiment started. In this study, 60 (four fuel loads × three 
fuel moisture contents × five slopes) combinations of various 
fuel loads, fuel moisture contents, and slopes were used. For 
the 0°, 10°, 20°, and 30° slope combinations, five replicate 
were used. For the 35° slope combinations, three replications 
were used. This totals 276 combustion experiments (Table 4). 
An infra-red thermometer was used to confirm that the burn
ing bed had cooled to room temperature before the com
mencement of each experiment to prevent the impact of the 
excess heat from affecting the next experiment. 

The Rothermel model is a model of a firefront in a 
‘seemingly steady state’ situation. In the process of upslope 
fire spread, the rate of fire spread first increases and then 
stabilises. After the pre-experiment, a 0.5-m long precom
bustion area was determined. When the fire heads passed 
through the precombustion area, the fire spread rate 
reached the ‘seemingly steady state,’ and at this time, the 
measurement of the fire spread rate was started (Li et al. 
2021). To measure the rate of fire spread, 20 thermocouples 

are placed along the centreline of the combustion bed at 
intervals of 0.1, 0.5 m from the igniting end; each thermo
couple position was 0.5, 0.6, 0.7, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 
1.9, 2.0, 2.1, 2.2, 2.3, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4 m. The time 
for each thermocouple’s temperature to reach 254°C was 
extracted, and this was called the igniting point for P. kor
aiensis. The thermocouple temperature–time image is fitted 
to the position time image at this point, and the slope of this 
fit indicates the rate of fire spread under the conditions of this 
experimental setup (Liu et al. 2014) (Fig. 2). 

Rothermel model parameter modification 

Prediction of ROS directly using the Rothermel 
model 
The Rothermel model is used in this section to predict the 

ROS under different fuel loads, fuel moisture contents, and 
slope conditions. Rothermel (1972) derived the prediction 
equations for the spreading rate under no-wind and no-slope 
conditions based on fuel characteristics and different fuel 
moisture contents. Dimensionless wind and slope equations 
were included to add the effects of wind and slope into the 

Table 4. Input parameters for the basic fire spread model.     

Symbol Parameter Pinus koraiensis fall 
of leaf   

h Low heat content (kJ kg−1) 17,854 A 

Mx The moisture content of extinction (fraction) 0.3 B 

σ Surface-area-to-volume ratio (m−2 m−3) 6864.3 A 

ρp Oven-dry particle density (kg m−3) 396.4 A 

ST Total mineral content (fraction) 0.0311 A 

Se Effective mineral content (fraction) 0.01 B 

AExperimental measurement. 
BRothermel model.  
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model in order to create the primary form of the Rothermel 
model, which Albini (1976b) subsequently modified. In this 
study, because the effect of wind on the rate of fire spread 
was not considered, the Rothermel model for the no-wind 
condition is as: 

=R I
Q0

R

b ig
(1)  

where R0 is the no-wind and no-slope rate of spread, IR is the 
reaction intensity, ξ is the propagating flux ratio, ρb is 
the bulk density, ε is the effective heating number, and Qig 
is the heat of preignition. 

R R= (1 + )0 S (2)  

where R is the rate of spread, and ϕS is the slope factor. 

I w h=R n M S (3)  

where Γ′ is the optimum reaction velocity, wn is the net fuel 
load, h is the low heat content, ηM is the moisture damping 
coefficient, and ηS is the mineral damping coefficient. 

= A( / ) exp[ (1 / )]A
max op op (4)  

where max is the maximum reaction velocity, β is the 
packing ratio, and βop is the optimum packing ratio. 

A = 133 0.7913 (5)  

where σ is the surface-area-to-volume ratio. 

= (495 + 0.0594 )max
1.5 1.5 1 (6) 

= 3.348op
0.8189 (7) 

= /b p (8)  

where ρp is the over-dry particle density. 

w= /b 0 (9)  

where w0 is the over-dry fuel load, and δ is the fuel bed 
depth. 

w w S= (1 )n 0 T (10)  

where ST is the total mineral content. 

r r r= 1 2.59 + 5.11( ) 3.52( )M M M
2

M
3 (11)  

where rM is Mf/Mx (max = 1.0). 

r M M= / (max =1.0)M f x (12)  

where Mf is the fuel moisture content, and Mx is the dead 
fuel moisture content during extinction. 

S= 0.174 (max =1.0)S e
0.19 (13)  

where Se is the effective mineral content. 

= (192 + 0.2595 ) exp[(0.792 + 0.681 )(
+ 0.1)]

1 0.5

(14) 

= 5.275 (tan )S
0.3 2 (15) 

= exp( 138/ ) (16) 
Q M= 250 + 1116ig f (17)  

The values of the input parameters of the Rothermel model 
are in Table 4. 

Rothermel model parameter modification 
The Rothermel model predicts a significant discrepancy 

between the ROS and observed ROS and has different appli
cability for various fuel types. The input parameters in the 
Rothermel model include three types: (1) fuel particle (h, ST, 
SE, and ρp); (2) fuel array (σ, w0, δ, and Mx); and (3) envir
onmental (Mf, ϕS, and U). The leading cause of the predic
tion inaccuracy is the variation in fuel array settings. The 
fuel array influences the fuel heat transfer process, where 
the primary fuel array parameter is. Since the environment 
has a different impact on ROS for various fuels, the fuel 
array and environment-related parameters are chosen for 
modification in this paper. 

The process of Rothermel model formulation has five 
main stages: (1) proposing a conceptual physical model 
framework; (2) proposing homogeneous fuel ROS prediction 
equations under windless conditions on flat land; (3) intro
ducing dimensionless wind and slope parameters; (4) extend
ing to nonhomogeneous fuel ROS prediction; and 
(5) practical application in the field. Therefore, the parame
ters of the fuel array and environment under no-wind and 
no-slope conditions are initially modified, the parameters 
with the best modification effect are compared and selected 
and then the optimal parameters are incorporated into the 
model for slope parameter modification. 

The parameters related to σ in the fuel array of the 
Rothermel model under no-wind and no-slope conditions 
include ε, A, βop, max , ξ and IR, and the Mf parameter is 
selected for correction in the environment. To improve the 
running efficiency of the MATLAB program, the parameters 
unrelated to the modification of the parameters are inte
grated and only the parameters to be modified are included. 

As an example of correcting the IR parameter, Eqns 4–17 
are first substituted into Eqn 1 to produce: 
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Converting the coefficients in Eqn 18 into that parameters to 
be modified yields Eqn 19: 
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1 1
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(19)  

Eqn 19 is the formula for modifying the IR parameter. Here, 
Y1 is the observed ROS under no-wind and no-slope condi
tions, X1 is the product of all Rothermel model parameters 
except IR, Z is σ, C is β, M1 is rM, M2 is (rM)2, M3 is (rM)3, K is 
Se, and a1, b1, c1, d1, e1, f1, g1, h1, i1, j1, k1, and l1 are the 
coefficients to be modified. 

Similarly, the modification equations for each of the 
other parameters are:  

(1) Modification ε: 

i
k
jjj y

{
zzzY X a

Z
= exp1 2

2 (20)  

where X2 is the product of all the Rothermel model parame
ters except ε and a2 is the coefficient to be modified.  
(2) Modification A: 

[ ]( )Y X B a Z B= exp (1 )a Z b
1 3 3

b
3 3 3 (21)  

where X3 is the product of all the Rothermel model parame
ters except A and B are the β/βop, and a3 and b3 are the 
coefficients to be modified.  
(3) Modification βop: 
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where X4 is the product of all the Rothermel model parame
ters except βop and a4 and b4 are the coefficients to be 
modified.  
(4) Modification max : 

Y X Z
b c Z

=
+

a

a1 5
5 5

5

5
(23)  

where X5 is the product of all the Rothermel model parame
ters except max , and a5, b5, and c5 the coefficients to be 
modified.  
(5) Modification ξ 

Y X a b Z C d
e f Z

= exp[( + )( + )]
+

c
1 6

6 6 6

6 6

6
(24)  

where X6 is the product of all the Rothermel model parame
ters except ξ and a6, b6, c6, e6, and f6 are the coefficients to 
be modified.  

(6) Modification ηM 

Y X a M b M c M= × (1 + )1 7 7 1 7 2 7 3 (25)  

where X7 is the product of all the Rothermel model parame
ters except ηM and a7, b7, and c7 are the coefficients to be 
modified. 

The mean relative error (MRE), mean absolute error (MAE), 
root mean square error (RMSE), coefficient of determination 
(R square, R2), and the R2 value of the predicted ROS and 
observed ROS of the Rothermel model were calculated after 
the parameter modification under no-wind and no-slope 
conditions was finished. The parameter with the best modi
fication effect was chosen and introduced into the 
Rothermel model for slope coefficient modification. The 
correction formula for the slope coefficient ϕs is: 

( )Y X a C T= × 1 + b c
2 8 8 8 8 (26)  

where X8 is the product of all Rothermel model parameters 
except ϕS; a8, b8, and c8 are the coefficients to be modified; 
and T is the tanϕ. 

Data processing and analysis 

A multifactor ANOVA was used to analyse the effects of fuel 
load, fuel moisture content, and slope, and their interactions 
on the ROS. The parameters in the Rothermel model are 
modified using the least squares method written in MATLAB 
R2018b (Eqns 19–26). Least squares are a mathematical 
modification technique for finding the best functional 
match of data by minimising the sum of squares of errors; 
this method can easily find the unknown data and reduce 
the sum of squares of errors between these data and the 
actual data. In the adjustment calculation, the number of 
equations listed is always less than the number of unknowns 
contained in the equation, which can be solved under the 
least squares criterion to obtain a set of unique solutions. 
Therefore, the least squares method is widely used in error 
estimation, uncertainty analysis, and model parameter solu
tions. The model-modification effect was evaluated using 
the MAE, MRE, RMSE, and R2. 

Results and discussions 

Observed ROS 

The rate of spread is one of the crucial indicators of fire 
behaviour and affected by a combination of factors. In this 
study, the ROS are influenced by the slope, fuel load, and 
fuel moisture content involved, which is similar to the basic 
principles of surface fire ROS. The three control variables of 
fuel load, fuel moisture content, and slope and their inter
actions all significantly affected the ROS (P < 0.001) 
(Table 5). In this study, the maximum average ROS was 
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2.96 m min−1 at a fuel load of 1.6 kg m−2 and the minimum 
average ROS was 0.10 m min−1 at a fuel load of 0.4 kg m−2 

(Table 6, Fig. 3). Overall, the ROS increased with increasing 
fuel load, which was similar to results of most studies. This 
occurred because an increase in fuel load directly improved 
the effective fuel load involved in combustion, added the 
heat released from the fuel during combustion, increased the 
flame length (Cruz et al. 2018b), and increased the heat 
release rate from the flame (Tihay et al. 2012), thereby 
enhancing the radiative preheating of the flame to the 
unburned fuel ahead (Tihay et al. 2014). However, in this 
study, the ROS decreased with increasing fuel load under 
certain fuel moisture content and slope conditions, such as 
fuel load = 1.2 kg m−2, FMC = 5%, and slope = 30°. This 
can be explained by the following: under certain combina
tions of fuel moisture content and slope conditions, a thresh
old value existed between the fuel load and ROS. Below this 
value, the ROS increased with increasing fuel load; above 
this value, with increasing fuel load, the combustible bed 
became thicker, more heat was needed to ignite the lower 
flammable fuel, and the proportion of heat needed to ignite 
the forward fuel described, as shown by a decreasing ROS. 
Some scholars have also decreased the above phenomenon.  
McCaw et al. (2012) found that although the ROS increased 
as the fuel load increased, the ROS was more significantly 
linked with the different parameters. Lozano et al. (2008) 
investigated the relationship between fuel load and ROS 
using particle image velocimetry (PIV). They found that as 
the fuel load increased, the fuel affected the oxygen supplied 
to the combustion zone, leading to a decrease in ROS. By 
conducting laboratory studies, Rothermel (1972) reported 
that the relationship between ROS and fuel loading 

depended on the fuel bed’s bulk density and the fuel particle 
surface-area-to-volume ratio. For fine surface fuels, if the 
bulk density was lower than the optimum packing ratio, 
the ROS increased with increasing fuel loading; however, 
if the bulk density was higher than the optimum packing 
ratio, the ROS decreased with increasing fuel loading. Based 
on the experimental results of this study, the optimum 
packing ratio could vary depending on the slope and fuel 
moisture content. Consequently, the ROS decreased with 
increasing fuel load. 

During upslope fires, the ROS increases with slope. In this 
study, as the slope increased from 10° to 20°, and from 20° 
to 30°, the ROS increased by 0.51 and 1.18 times, respec
tively. The heat transmission between the fuel bed varied as 
the slope increased, and the mode shift occurred at a slope 
of approximately 20°. Dupuy and Maréchal (2011) found 
that radiative heat transfer between fuel beds dominated the 
mechanism of fire spread heat transfer influence for slope 
conditions between 0° and 20°. However, at 20° or higher 
slopes, convective heating significantly increased, but radi
ative heat transfer ceased to grow or even slightly 
decreased. Thus, convective heating was the primary com
ponent affecting the increase in ROS under high slope con
ditions. To precisely estimate the ratio of radiation and 
convection at various slopes and determine the critical 
slope of the heat transfer change, smaller slope gradients 
should be used in subsequent investigations of the influence 
of the slope on the ROS. 

In this study, the ROS decreased with increasing fuel 
moisture content. Studies related to this topic have demon
strated that when the fuel moisture content increases, the 
ignition energy needed to ignite the fuel also increases. This 
occurs because when the fuel is ignited, the water is heated 
to the boiling point and fully vaporised before it reaches the 
ignition temperature. Once the fuel is ignited, as the fire 
spreads, the water in the adjacent fuel needs to be evapo
rated, and the latent heat of vaporisation of the water 
absorbs the heat released as the fuel burns, resulting in a 
lower ROS (Simard 1968). Moreover, a reduced ROS results 
from the water in the fuel being released into the air as 
water vapour; this reduces the oxygen concentration and the 
heat generated by the flame (Rothermel and Anderson 1966;  
Catchpole et al. 1998; Mendes-Lopes et al. 1998). In future 
experiments, we plan to study the effects of various 

Table 5. Analysis of variance.       

Effect factors df Mean square F-value P-value   

Fuel load  3  2.40  148.85  <0.001 

FMC  2  4.54  281.31  <0.001 

Slope  4  10.47  649.46  <0.001 

Fuel load × FMC  6  0.20  12.61  <0.001 

Fuel load × slope  12  0.36  22.18  <0.001 

FMC × slope  8  0.67  41.29  <0.001   

Table 6. The rate of spread overall (m min−1).          

Fuel load (kg m−2) Minimum Maximum Mean s.d. Percentiles 

25% 50% 75%   

0.4  0.10  1.09  0.36  0.24  0.18  0.26  0.46 

0.8  0.14  1.99  0.51  0.41  0.23  0.33  0.67 

1.2  0.16  2.51  0.68  0.56  0.27  0.39  1.01 

1.6  0.19  2.96  0.74  0.63  0.29  0.48  1.07   
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variables on ROS at greater depths by using smaller slopes, 
fuels with higher moisture content, and fuel load gradients. 

Modification results for the Rothermel model 
parameters 

Modification results for no-wind and no-slope 
conditions 
Under no-wind and no-slope conditions, the fuel array 

parameters of the Rothermel model were modified. The 
improvement in model prediction accuracy varied depend
ing on the variations in parameter modification. The results 
show that the MAE, MRE, and RMSE for the modified IR 
parameters are the lowest compared to those for the mod
ified other parameters, 0.123 m min−1, 17.39%, and 
0.19 m min−1, respectively, with R2 = 0.67 (Fig. 4). 
Compared with those of the original Rothermel model, the 
MAE, MRE, and RMSE for the predicted ROS under no-wind 
and no-slope conditions were reduced by 0.04 m min−1, 

3.85% and 0.04 m min−1, respectively. Compared with the 
original Rothermel model, the equation for the modified IR 
parameters is (shown in Eqn 27): 

Ä
Ç
ÅÅÅÅÅÅÅ
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ÑÑÑÑÑÑÑ
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1 6 495 + 0.0189 3.299
132.99
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3.299

1 2 3
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a

1.498

6 2.11

2.065

2.11

(27)  

The most significant improvement in forecast accuracy is 
associated with the adjusted IR parameters, indicating that 
the IR is the critical factor influencing the Rothermel model’s 
prediction. Modifying the ηM parameter alone is only second to 
correct the IR, which suggests that ηM has the most excellent 
effect on the IR and an essential effect on the Rothermel model. 
Rothermel developed the empirical formula IR from laboratory 
measurements of various fuel types and environmental vari
ables. The IR includes five parameters: (1) modification 
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Fig. 3. Rate of spread variation under different conditions. (a–c) Observed ROS. (d–f) Rothermel model predicted ROS. 
(g–i) Predicted ROS after modifying the Rothermel model parameters.    
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reaction density; (2) net fuel load; (3) low heat content; 
(4) moisture damping coefficient; and (5) mineral damping 
coefficient. As a result, when modifying the Rothermel model, 
more than just one model parameter need to be considered. 
Additionally, the combined influence of several factors on the 
model’s prediction results should be considered, and the IR 
should be re-evaluated for various fuels. 

Modification results of the slope parameters 
In this section, the modified IR parameter is brought into 

the Rothermel model to modify the slope parameter ϕs, and 
the modification of Eqn 25 yields: 

Y X C T= × (1 + 9.52 )2 8
0.027 2.169 (28)  

The modification results are incorporated into the Rothermel 
model, and Fig. 5 depicts the model’s predicted ROS and errors. 
The model predicts ROS with an MAE = 0.46 m min−1, an 
MRE = 25.09%, an RMSE = 0.77 m min−1, and an R2 = 0.80 
after improving the slope parameter. 

The accuracy of the Rothermel model predicted ROS on 
the surface of the P. koraiensis plantation forest significantly 
increased after modification of the slope parameters; the 
MRE of the model predicted ROS decreased by 18.64%, 
and the MAE decreased by 0.33 m min−1. This occurred 
because actual ROS data was used for modification, and 

related studies have shown that it can improve the model’s 
accuracy for ROS prediction by using real ROS data for 
model parameter modification. From the errors that the 
original Rothermel model projected after slope and modified 
parameters, the general trend is consistent with original 
model. But the most significant error value is shown at the 
30° condition (MRE = 31.82%, MAE = 0.42 m min−1), 
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which might be because the calculation for the slope param
eter only takes into account two variables: (1) the fuel 
compression ratio; and (2) the tangent function of the 
slope. The change trend in physical mechanisms cannot be 
sufficiently described as the increase in the fire spread rate 
with slope. Instead, a thorough understanding of the fuel 
preheating mechanism is needed to develop accurate model 
predictions (Yuan et al. 2020). Therefore, physical equations 
need to be added to the slope parameter to enhance model 
prediction in further investigations. 

Rothermel model prediction accuracy evaluation 

The MAE and MRE of the predicted surface fuel ROS vs the 
observed ROS for P. koraiensis plantation forests with 

various combinations of fuel load, fuel moisture content, 
and slope in Fig. 6, with each bar representing the mean 
value of the prediction error at various levels of influencing 
factors. The data were obtained using the Rothermel model 
directly and after modification of the model’s parameters. 
The MAE ranged from 0.03 to 4.04 m min−1, and the MRE 
ranged from 4.28 to 105.59% with direct use of the 
Rothermel model. The Rothermel model predicted an MRE 
in the 4.40–53.99% range and an MAE in the 
0.03–2.16 m min−1 range after modification of the IR and 
ϕs parameters. After the parameters were modified, the 
prediction accuracy of the Rothermel model significantly 
increased compared to that of the original Rothermel model. 

When using the Rothermel model directly to predict the 
ROS, the relationship between fuel loads and prediction 
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error increased, then decreased, and then continued to 
increase, with the lowest MRE of 31.60% occurring at 
0.4 kg m−2 and the highest MRE of 55.87% occurring at 
1.6 kg m−2. After modifying the model parameters, the 
MRE showed an initial decreasing trend and then an increas
ing trend, with the lowest error of 19.32% occurring at 
1.2 kg m−2. With fuel loads of 0.4, 0.8, 1.2, and 
1.6 kg m−2, the MAE decreased by 0.08, 0.27, 0.22, and 
0.66 m min−1, respectively, while the MRE decreased by 
4.08, 15.32, 15.19, and 28.54%, respectively. Because the 
internal structure of the fuel bed changed due to a change in 
fuel loads, the heat transfer mode of the fuel during the 
combustion process also changed, resulting in poor predic
tion accuracy for the Rothermel model under different fuel 
load conditions. The Rothermel model forecasts the same 
fuel type with varying degrees of accuracy for various fuel 
load scenarios. Benali et al. (2016) found that the uncertain
ties in fuel model assignments and parameters significantly 
impacted the prediction of the ROS and that small changes 
in fuel structure could result in large changes in the pre
dicted or observed ROS. Caution is advised when using the 
Rothermel model to predict ROS for various fuel loads. The 
prediction error caused by the change in loading is some
what altered by the Rothermel model based on combustion 
experiments with modifications IR and ϕs. The prediction 
accuracy greatly improved (Fig. 5). 

As shown by the fuel moisture content and model predic
tion errors (Fig. 6), the Rothermel model directly predicts 
higher ROS levels than the observed ROS, and the MRE 
increases with increasing fuel moisture content, with the 
lowest MRE of 34.26% occurring at 5% fuel moisture con
tent and the highest at 15% occurring at 48.08%. This 
occurs because: (1) the Rothermel model’s direct application 
predicts a more excellent ROS than the observed ROS, indi
cating that the model underestimates the impact of moisture 
content on ROS, and this, increases the predictive error of 
the model (Storey et al. 2021); and (2) the fuel-related 
component of the Rothermel model is called ηM, where ηM 
comprises the variables Mf and Mx. The range of Mx for 
various kinds of pine needles is between 28 and 40% 
(Rothermel 1972). The fixed value of 30% provided in the 
Rothermel model is the Mx employed in this study; this 
value should differ from the actual Mx of P. koraiensis 
surface fuel. The modified parameters of the Rothermel 
model predicted that the MRE of ROS would increase with 
increasing moisture content, decrease by 15.79%, and 
decrease by 0.30 m min−1 compared to those of the original 
model. 

In terms of the slope and model prediction errors, the 
MRE of ROS prediction directly using the Rothermel model 
increased and then decreased with increasing slope, with a 
mean value of 40.64%, the smallest MRE of 21.24% at 0°, 
and the lowest MRE of 61.44% at 20°. There may be three 
reasons for this difference. First, in the Rothermel (1972), 
only combustion experiments were carried out at 25, 50, 

and 75%, with slope conditions of 14.32°, 28.64°, and 
42.96°, and this large range of slope gradient settings were 
insufficient to represent the ROS variations at all slopes. 
Second, in addition, Andrews’ (2018) summary of the 
Rothermel model slope parameters revealed that different 
fuel types corresponded to different slope parameters; there
fore, using a fixed slope parameter to predict different fuel 
types led to significant errors. Third, the Rothermel model 
incorporates the effect of slope on the ROS into the model by 
adding dimensionless slope coefficients without considering 
the shift in heat transfer during the increase in slope. The 
combined impact of these three factors increases the signifi
cance of the Rothermel model prediction inaccuracy under 
slope circumstances. After the parameters are modified, the 
Rothermel model predicts that the MRE of the ROS increases 
and then decreases with increasing slope, with the lowest 
value of 17.39% occurring at 0° and the highest value of 
32.87% occurring at 30°, for a mean value of 24.85%. The 
slope parameter is a dimensionless factor added to the 
Rothermel model through the empirical formula, which 
has no practical physical meaning. The original Rothermel 
model overestimates the impacts of the compression ratio 
and slope factors on the ROS, leading to significant model 
projections when combined with the modified slope 
formula. 

Overall, compared with the original model, the modified 
Rothermel model yielded a 15.22% decrease in the MRE, a 
0.27 m min−1 decrease in the MAE, a 0.39 m min−1 

decrease in the RMSE, and a R2 = 0.80. These findings 
demonstrated the significant improvement in the prediction 
accuracy of the Rothermel model after the parameters were 
modified. 

The prediction accuracy of the Rothermel model 
increased with model prediction MRE = 25.09% after 
some model parameters were modified based on the real 
ROS acquired from inlab combustion tests. Cruz and 
Alexander (2013) used ROS data from 1278 fires to analyse 
the applicability of 49 fire spread models. They found that a 
model prediction error of 35% was considered a reasonable 
model performance criterion. As a result, the modified 
Rothermel model in this study could be used for ROS pre
diction of surface fires in P. koraiensis plantations. 

To increase the precision of the model in forecasting the 
ROS of surface fires in P. koraiensis plantations, we modified 
several Rothermel model parameters using ROS data from 
laboratory combustion experiments. We performed a pre
liminary study on the connection between the influencing 
elements and the model’s forecast accuracy. Due to the 
experimental setup, this study only displayed indoor com
bustion tests for a single combustible material under varied 
fuel loads, fuel moisture content, and slope circumstances. 
This study can provide fundamental information for the 
ensuing fire database despite variations in actual field 
fires. In addition, predicting spatial and temporal changes 
in fire behaviour and protecting lives of firefighters are 
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crucial. Moreover, understanding fire behaviour, predicting 
spatial and temporal changes in fire behaviour, providing 
guidelines for conducting local fire risk assessments and 
developing fire management systems are essential. 

Conclusion 

In this paper, the ability of the Rothermel model to predict 
surface fire ROS in P. koraiensis plantations under different 
fuel loads (0.4, 0.8, 1.2, and 1.6 kg m−2), fuel moisture 
contents (5, 10, and 15%), and slopes (0°, 10°, 20°, 30°, 
and 35°) was investigated through laboratory combustion 
experiments. The model’s accuracy was evaluated, and the 
model parameters were modified based on laboratory- 
acquired ROS data. We conclude that the effects of varia
tions in fuel load, fuel moisture content, and slope on ROS 
from a single factor are consistent with our current knowl
edge of combustion. Despite this, numerous factors interact 
to cause the opposite trend in ROS. The prediction accuracy 
of predicting ROS directly using the Rothermel model is 
poor. The accuracy of the Rothermel model in predicting 
ROS can be significantly improved by correcting the 
Rothermel model parameters with the ROS data obtained 
in the laboratory. In subsequent work, the prediction accu
racy of the Rothermel model will be improved by merging 
data from controlled fires and actual forest fires. 

Nomenclature 

Symbol Parameters 
R0 No-wind and no-slope rate of spread 

(m min−1) 
IR Reaction intensity (kW m−2) 
ξ Propagating flux ratio 
ρb Bulk density 
ε Effective heating number 
Qig Heat of preignition (kJ kg−1) 
R Rate of spread (m min−1) 
ϕS Slope factor 
Γ′ Optimum reaction velocity (min−1) 
wn Net fuel load (kg m−2) 
h Low heat content (kJ kg−1) 
ηM Moisture damping coefficient 
ηS Mineral damping coefficient 

max Maximum reaction velocity (min−1) 
β Packing ratio 
βop Optimum Packing ratio 
A – 
σ Surface-area-to-volume ratio (m−1) 
ρp Over-dry particle density (kg m−3) 
w0 Over-dry fuel load (kg m−2) 
δ Fuel bed depth (m) 
ST Total mineral content 
rM Mf/Mx (max = 1.0) 

a1, a2, b2, a3, 
b3, a4, b4, 
c4, a5, b5, 
c5, d5, e5, f5, 
a6, b6, c6, 
d6, e6, f6, g6, 
h6, i6, j6, k6, 
l6, a7, b7, c7, 
a8, b8, c8 

The coefficients to be modified 

Mf Fuel moisture content 
Mx Dead fuel moisture content of extinction 
Se Effective mineral content 
ϕ Slope (°) 
ϕS Slope factor 
Y1 Observed ROS under no-wind and no-slope 

conditions (m min−1) 
X1 Product of all Rothermel model parameters 

except IR 

X2 Product of all Rothermel model parameters 
except ε 

X3 Product of all Rothermel model parameters 
except A 

X4 Product of all Rothermel model parameters 
except βop 

X5 Product of all Rothermel model parameters 
except max

X6 Product of all Rothermel model parameters 
except ξ 

M2 (rM)2 

M3 (rM)3 

X7 Product of all Rothermel model parameters 
except ηM 

Y2 Observed ROS under no-wind condition 
(m min−1) 

X8 Product of all Rothermel model parameters 
except ϕs 

T tan ϕ  
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