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ABSTRACT 

Background. Near-term forecasts of fire danger based on predicted surface weather and fuel 
dryness are widely used to support the decisions of wildfire managers. The incorporation of 
synoptic-scale upper-air patterns into predictive models may provide additional value in opera
tional forecasting. Aims. In this study, we assess the impact of synoptic-scale upper-air patterns 
on the occurrence of large wildfires and widespread fire outbreaks in the US Pacific Northwest. 
Additionally, we examine how discrete upper-air map types can augment subregional models of 
wildfire risk. Methods. We assess the statistical relationship between synoptic map types, surface 
weather and wildfire occurrence. Additionally, we compare subregional fire danger models to 
identify the predictive value contributed by upper-air map types. Key results. We find that these 
map types explain variation in wildfire occurrence not captured by fire danger indices based on 
surface weather alone, with specific map types associated with significantly higher expected daily 
ignition counts in half of the subregions. Conclusions. We observe that incorporating upper-air 
map types enhances the explanatory power of subregional fire danger models. Implications. Our 
approach provides value to operational wildfire management and provides a template for how 
these methods may be implemented in other regions.  

Keywords: fire danger, fire management, forecasting, Pacific Northwest, policy, subregional, 
predictive services, synoptic, weather. 

Introduction 

Wildland fire is a pervasive and growing concern in much of the western United States, 
with considerable resources expended annually on wildfire suppression. In Pacific US 
forests, the mean fire weather season lengthened by 43% from 1979 to 2019, and annual 
burned area increased by nearly 50% from 2001 to 2019 (Jones et al. 2022). Wildfire 
occurrence in western US forests is projected to continue increasing into future decades, 
with annual burned area potentially doubling between 2020 and 2050 (Abatzoglou et al. 
2021). As a result of increasing season length and intensity, fire managers are having to 
contend with more simultaneous wildfires, creating additional strains on wildfire sup
pression resources (Podschwit and Cullen 2020). Climate projections suggest increases in 
both the number of simultaneous wildfires and the length of the high-simultaneity season 
across the western US over the coming decades, further taxing suppression resources 
(McGinnis et al. 2023). 

The National Predictive Services Program, which employs fire meteorologists at the 
National Interagency Coordination Center (NICC) and 10 regional Geographic Area 
Coordination Centers (GACCs), provides fire weather forecasting services that support 
the short-term to seasonal decision making of fire managers (Wordell and Ochoa 2006). 
Since the program’s inception in 2001, meteorologists at Predictive Services have become 
a trusted source of information and are central actors in the interagency network of fire 
management professionals (Owen et al. 2012). Although Predictive Services products 
such as the 7-Day Significant Fire Potential Outlook have been found to have significant 
skill predicting both ignitions and operationally significant fires (Preisler et al. 2016), 
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additional improvements to forecasting methods may 
reduce expenditures and increase the efficacy of suppression 
resources (Preisler et al. 2011). 

Fire weather predictions rely on forecasts of both surface 
weather and upper-air conditions. Surface weather attri
butes including temperature, moisture and wind are often 
combined using fuel models to calculate fire danger indices 
(Fosberg 1978; Cohen and Deeming 1985; Srock et al. 
2018). Upper-air characteristics, such as 500-hPa geopoten
tial heights, are useful for understanding the synoptic-scale 
features – such as the configuration and strength of ridges 
and troughs – that drive surface weather as well as cloud-to- 
ground lightning. Previous studies have linked variability in 
upper-air geopotential heights to critical fire weather 
(Schroeder et al. 1964; Newark 1975; Crimmins 2006) and 
lightning occurrence (van Wagtendonk and Cayan 2008;  
Kalashnikov et al. 2022), including in the Northwestern 
US (Rorig and Ferguson 1999; Gedalof et al. 2005; Zhong 
et al. 2020). Synoptic patterns, particularly upper-air ridges, 
have also been linked directly to increased wildfire activity 
(Henry 1978; Skinner et al. 2002; Nauslar et al. 2019;  
Sharma et al. 2022). 

In this study, we explore the predictive value of a set of 
13 map types used operationally by meteorologists at the 
Northwest Interagency Coordination Center (NWCC) to 
characterise synoptic-scale variation in 500-hPa geopoten
tial heights over the region. This set of archetypal synoptic 
patterns was developed at the NWCC by fire weather mete
orologist Terry Marsha in the late 1980s and early 1990s. 
Although the methodology for identifying this particular set 
of map types is not well documented, there are a number of 
techniques commonly used to condense gridded 500-hPa 
geopotential height data into a set of discrete map types, 
including empirical orthogonal function analysis, k-means 
clustering and self-organising maps (Grotjahn et al. 2016;  
Harries and O’Kane 2020). Rather than employing these 
methods to generate a new set of map types, the present 
work examines the relationship between a set of 13 opera
tional map types and wildfire occurrence to provide value in 
NWCC wildfire forecasting operations. 

This scientific co-production grew out of stakeholder 
engagement conducted as part of a larger National 
Science Foundation (NSF) convergence research effort 
focused on projecting future wildland fire occurrence and 
impacts in the western US (Cullen et al. 2023). We build on 
the deep qualitative understanding of synoptic map types 
leveraged by fire weather forecasters at the NWCC by 
assessing the quantitative relationships between 500-hPa 
map types, surface-based fire danger indices and wildfire 
occurrence. We investigate three main research questions: 
(1) which 500-hPa map types are associated with large 
fires and widespread fire outbreaks? (2) How do 500-hPa 
map types correlate to regional fire danger indices? (3) 
How can 500-hPa map types augment subregional models 
of wildfire risk? 

Materials and methods 

Study area 

Our study area is composed of the 12 predictive service 
areas (PSAs) in the Northwest geographic area, which 
encompasses the states of Washington and Oregon in the 
northwestern United States. PSAs represent the spatial unit 
at which the NWCC and other regional coordination centres 
produce both seasonal and subseasonal fire weather fore
casts. In the NWCC, PSA boundaries were drawn to encom
pass Remote Automatic Weather Stations (RAWSs) with 
highly correlated measurements of daily minimum relative 
humidity (Marsha 2014). The study period spans the 20 fire 
seasons from 2001 to 2020, with earlier years excluded 
owing to inconsistencies in the RAWS data. We define the 
fire season to include the months of June through 
September, which account for 84% of all fires and 91% of 
the burned area in the region over the study period. 

The 12 PSAs in the Northwest are grouped into three 
broad regions: westside, central and eastside (see Fig. 1). 
The four westside PSAs (NW01–NW04) include the most 
densely populated areas in the region as well as the moist 
coniferous forests of the Olympic Peninsula and the western 
slopes of the Cascades. NW04, located in southwest Oregon, 
is more mountainous than the other westside PSAs owing to 
its inclusion of the northern Klamath Mountains. The three 
central PSAs (NW05–NW07) lie in the rain shadow of the 
Cascades and are dominated by dry coniferous forests. The 
five eastside PSAs (NW08–NW12) are more varied: NW08, 
NW09 and NW11 are mountainous, whereas NW10 and 
NW12 include significant areas of shrubland, grassland 
and cultivated crops. 

The PSAs vary greatly both in terms of number of annual 
fires and area burned (Fig. 2). The heavily populated west
side PSAs of NW01 and NW02 have the smallest annual burn 
areas despite their moderate ignition counts, indicating that 
fires that ignite in these areas do not grow beyond a fairly 
small size. In contrast, average fire sizes are much larger in 
the eastside PSAs of NW10 and NW12, which experience the 
largest annual burn areas resulting from relatively few 
annual fires. These differences in average fire size are likely 
due to variation in both landcover and wildfire suppression 
priorities. 

Data 

In this study, we construct and analyse a longitudinal data
set combining daily wildfire occurrence data with 500-hPa 
map types and fire danger indices. Data on the occurrence of 
wildfires are drawn from the Fire Program Analysis fire- 
occurrence database (Short 2022). Each fire in the dataset 
includes a point of origin, discovery date and final burned 
area. Wildfires are spatially matched to PSAs using their 
point of origin. We further classify fires as ‘large’ based on 
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whether their final size exceeds the operational threshold 
for significant fires, which is defined as fires that are likely 
to require the mobilisation of outside resources (Marsha 
2014). In the Northwest, significant fires are identified as 
those exceeding PSA-specific size thresholds (Table 1), 
which approximately correspond to historical 95th percent
ile fire sizes within each PSA. Focusing on fires that are 
relatively large within a given region, in addition to consid
ering total ignition counts, is of operational significance 
because these large fires require the largest amount of sup
pression resources (Nagy et al. 2018). 

Following the protocol used operationally by the NWCC, 
the 500-hPa maps assessed in this study are centred over the 

Northwest geographic area, with a geographical extent of 
110°–135°W longitude and 35°–55°N latitude. Geopotential 
heights are sampled at 30 points across this area at five- 
degree increments from Global Forecast System (GFS) initi
alisations at 00Z, which corresponds to 5:00 pm local time 
(i.e. Pacific Daylight Time) during the fire season. This 
30-point grid, which is relatively coarse compared with 
currently available weather products, was adopted by the 
NWCC in the late 1980s owing to data availability and 
computational limitations. This spatiotemporal sampling 
methodology has been used operationally by the NWCC 
since the early 1990s and captures much of the synoptic- 
scale variation in the region. 
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Fig. 2. Average number of fires and area burned per PSA, fire seasons 2001–2020.    
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Northwest geographic area and land cover classifica
tions from the 2011 National Land Cover Database 
(NLCD), with key RAWSs used to calculate daily fire 
danger in each PSA indicated.    
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The 500-hPa geopotential heights for a given day are 
correlated against a set of 13 operational map type templates 
(Fig. 3), and the map type that is most highly correlated with 
a given day’s geopotential heights is selected to represent that 
day. This set of 13 map types was developed by fire meteo
rologists at the NWCC to characterise the region’s major 
synoptic-scale patterns. The map types (UMAPs) can be sub
divided into several groups based on their dominant synoptic 
patterns. UMAP 1 and UMAP 2 both feature offshore upper- 
level troughs that drive southwesterly winds and precipita
tion. UMAP 3 through UMAP 6 are characterised by troughs 
over the Pacific Northwest and cooler temperatures. UMAP 7 
and UMAP 8 indicate zonal and split flow, respectively, and 
suggest onshore winds and mild temperatures. Finally, UMAP 
9 through UMAP 13 are ridging patterns, associated with 
higher temperatures and dry conditions. 

Our analyses test 10 standard fire danger indices for both 
correlation with the 500-hPa map types and their utility in 
forecasting wildfire occurrence. Four of these, Energy Release 
Component (ERC), Spread Component (SC), Burning Index 
(BI) and Ignition Component (IC), are composite fire danger 
indices that are part of the National Fire Danger Rating System 
(National Wildfire Coordinating Group 2002). Four are fuel 
moisture indices, which include 100-hour fuel moisture con
tent (F100) for small-diameter dead fuels, 1000-hour fuel 
moisture content (F1000) for larger-diameter dead fuels, her
baceous fuel moisture (FMH) for live herbaceous vegetation 
and woody fuel moisture (FMW) for live woody vegetation. 
Additionally, we consider daily maximum vapour pressure 
deficit (VPDM) and the Keetch–Byram Drought Index (KBDI). 

Each of the 10 fire danger indices is calculated daily for 
each PSA. Weather metrics including daily maximum tem
perature, minimum relative humidity, precipitation dura
tion and VPDM are measured at key RAWSs within each 

PSA, shown in Fig. 1. There are 72 key RAWSs in the 
Northwest, with each PSA represented by between three 
and nine RAWS. The RAWS density is fairly high in most 
of the Northwest, and the selection of the key RAWSs for 
each PSA in the Northwest was optimised by NWCC fire 
weather meteorologists in 2001 (Brown et al. 2011). The 
RAWS observations serve as inputs to the FireFamilyPlus 
software (Bradshaw and McCormick 2000), which generates 
daily fire danger indices for each PSA using equations from 
the 2016 version of the National Fire Danger Rating System 
(NFDRS). 

To quantify the value added by incorporating map types 
into predictive models of large wildfire, we establish a 
baseline using historical 7-Day Significant Fire Potential 
Outlooks (SFPOs) issued for the Northwest geographic 
area from 2006 to 2020. Although these outlooks have 
shifted from a nine-level qualitative scale to a five-level 
qualitative scale over the history of the SFPO, both coding 
schemes include a critical threshold at which the expected 
probability of significant wildfire exceeds 20% on a given 
day. In our assessment of the value added to fire weather 
forecasting by incorporating 500-hPa map types, we there
fore flatten the qualitative SFPOs to a binary value for each 
day that indicates whether the forecast probability of a large 
fire was below or above this 20% threshold. 

Statistical approach 

To address our first research question, which compares the 
regional incidence of large fires and widespread fire out
breaks among 500-hPa map types, we consider two out
comes: (i) the probability that a large wildfire will ignite 
on a given day, and (ii) the probability that a high number 
of ignitions will occur on a given day. Our analysis of the 
probability of large wildfire is conducted using PSA-specific 
size thresholds. That is, if a fire that ultimately exceeds the 
size threshold for the PSA in which the fire ignites on a given 
day, that day is designated as a ‘large fire’ day. For the 
second measure of risk, we define ‘high ignition’ days as 
those with ignition counts at or above the 80th percentile, 
which corresponds to days with 33 or more ignitions across 
the entire GACC. The statistical significance of variation 
between map types in the frequency of high-ignition days 
and days with large fires is assessed using a chi-square test. 

Our second research question examines the relationship 
between the 500-hPa map types and fire danger indices. 
This analysis is conducted at the GACC level by calculating 
aggregate fire danger for the entire geographic area using 
the area-weighted mean of daily PSA-level indices. We then 
estimate Pearson correlation coefficients between a set of 
dichotomous map type indicators and each fire danger 
index. These correlations allow us to determine whether 
there is a statistically significant difference (P < 0.05) in 
fire danger between days associated with a given map 
type and days when a different map type is observed. 

Table 1. Size thresholds for significant fires in the Northwest 
geographic area.    

Predictive service area Significant fire size (hectares)   

NW01 40.47 

NW02 40.47 

NW03 40.47 

NW04 40.47 

NW05 323.75 

NW06 809.37 

NW07 40.47 

NW08 890.31 

NW09 40.47 

NW10 1011.71 

NW11 202.34 

NW12 4046.86   
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Our third research question assesses the value of the 500- 
hPa map types in augmenting subregional models of wildfire 
risk. In this analysis, we compare the performance of statisti
cal models for two different PSA-level outcomes: (i) the total 
number of ignitions on each day, and (ii) the probability of a 
large fire igniting on each day. The models of total daily 
ignitions are estimated using negative binomial regression, 
which is appropriate for overdispersed count data and per
forms well in this empirical context (Arienti et al. 2009). The 
models of the probability of a large fire igniting on a given 
day are estimated using logistic regression, which is com
monly used to model binary outcomes (Andrews et al. 2003). 

For each outcome and PSA, we test a set of 10 fire- 
danger-only models and a set of 10 with-map-type models. 
In the fire-danger-only models, the outcome of interest is 
modelled using each of the 10 fire danger indices, in turn, as 
a predictor. The 10 with-map-type models build on the fire- 
danger-only models by pairing each of the 10 fire danger 

indices with a set of daily map type indicators. After fitting 
each set of candidate models, we identify the most predic
tive model by comparing Akaike weights between the mod
els. Akaike weights compare the Akaike information 
criterion (AIC) of each candidate model against the model 
with the lowest AIC, estimating the probability that each 
model provides the best fit within the set of candidate 
models (Wagenmakers and Farrell 2004). 

Finally, we assess the predictive value added by the map 
types by evaluating how our logistic models of large fire 
improve on the accuracy of historical SFPOs. We evaluate 
the forecasts using two metrics: the false alarm rate and the 
miss rate. The false alarm rate is calculated by dividing the 
number of false positives (days when large fires were pre
dicted but did not occur) by the total number of days when 
large fires were predicted. The miss rate is calculated by 
dividing the number of false negatives (days when large 
fires were not predicted but did occur) by the total number 
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Fig. 3. Thirteen 500-hPa map types used operationally by the NWCC for fire weather forecasting. The 30-point geopotential 
height data used for matching have been smoothed by taking a composite of 1-degree ERA5 geopotential heights from days that 
match to each map type over the study period.    
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of days when large fires occurred. We calculate both metrics 
first for the historical SFPOs and then for forecasts that 
augment the SFPOs with the output of our logistic models 
of large fire. The difference between these two sets of met
rics represents the operational value added by incorporating 
map types into forecasts of large wildfire. 

Results 

Regional association between 500-hPa map types 
and wildfire risk 

At the regional level, there is notable variation between map 
types in both the probability of observing a high-ignition 
day and the probability of a large fire igniting, as shown in  
Fig. 4. The three map types in the top-right quadrant of the 
graph (UMAPs 9–11) are all ridging patterns associated with 
elevated probabilities of both high ignition counts and large 
fires. Statistically significant (P < 0.05) increases in high- 
ignition days are observed for UMAP 2 and UMAPs 9–11, 
whereas UMAPs 9, 11 and 12 have significantly more days 
with large fires. In contrast, the patterns corresponding to 
upper-level troughs (UMAPs 3–6) have the lowest probabil
ity of high ignition counts and large fire. UMAPs 1, 4–6 and 
8 have significantly fewer high-ignition days, and UMAPs 
4–6 have significantly fewer days with large fires. 

The map types are also associated with significant varia
bility in regional fire danger indices. Fig. 5 shows the corre
lations between GACC-level fire danger indices and daily 
assigned 500-hPa map types. The trough patterns (UMAPs 
3–6) are observed to have strongly significant negative 

associations with the NFDRS fire danger indices (SC, ERC, 
BI and IC) and generally positive associations with the fuel 
moisture indices (F100, F1000, FMH and FMW). The ridge 
patterns (UMAPs 9–13) illustrate the inverse pattern of 
correlation: these map types are associated with high fire 
danger and low fuel moisture. The offshore troughs (UMAPs 
1–2), zonal flow (UMAP 7) and split flow (UMAP 8) patterns 
deviate less significantly from average levels of fire danger 
and fuel moisture. 

Augmenting subregional models with 500-hPa map 
types 

Our model selection procedure indicates that the inclusion 
of map type effects offers a significant improvement in the 
performance of daily PSA-level ignition count models. The 
top panel of Table 2 shows the Akaike weights for the fire- 
danger-only models (rows 1–10) and the with-map-type 
models (rows 11–20). The best-performing model among 
the fire-danger-only and the with-map-type models is high
lighted in grey for each PSA. For the ignition count models, 
the preferred fire danger index does not change between the 
fire-danger-only and the with-map-type models. ERC and 
VPDM are the preferred fire danger indices for the majority 
of PSAs, whereas F1000 is most predictive in the NW04 and 
NW11 PSAs. Finally, the bottom panel of Table 2 shows the 
Akaike weight comparison between the best fire-danger- 
only and the best with-map-type model for each PSA. For 
all PSAs, the models that include map type indicators out
perform those that rely on fire danger indices alone. 

The model selection results for the probability of large 
fire are analogously shown in Table 3. VPDM is the most 
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predictive fire danger index for most PSAs in both the fire- 
danger-only and with-map-type models. As shown in the 
lower panel of the table, the inclusion of map type improves 
the prediction of large fire in 4 of the 12 PSAs. In eight of the 
PSAs, the additional explanatory power of the map type 
indicators does not outweigh the model complexity penalty 
imposed by the AIC estimator. In none of the PSAs were 
statistically significant map type effects observed in models 
of the probability of large fire. 

Map-type effects for the best-performing models of total 
daily ignitions are estimated as incidence rate ratios and 
displayed for each PSA in Fig. 6. These incidence rate ratios 
indicate how many times more (or fewer) ignitions occurred 
when each map type was observed relative to what would be 
expected when a different map type occurred on a day with 
the same level of fire danger. Notably, the PSAs in eastern 
Washington and all of Oregon have significantly higher 
expected daily ignitions on days when UMAP 2, the offshore 
trough, was observed, experiencing between 1.23 and 1.98 
times higher ignition counts than expected given the fire 
danger. The ridging patterns (UMAPs 9–13) were notably 
heterogeneous in their effects, particularly in southwestern 
Oregon. Whereas UMAPs 9–11 were associated with an 

increase in conditional ignitions in the NW04 and NW07 
PSAs, UMAP 12 was associated with fewer ignitions than 
expected in these PSAs. 

Our assessment of the value added by incorporating map 
types into the forecasting of large fires indicates that our 
logistic models reduce the miss rate in 8 of the 12 PSAs, 
while increasing the false alarm rate in only five PSAs. Fig. 7 
shows the false alarm and miss rates for both the historical 
SFPOs and a forecast constructed by taking the union of the 
SFPO and with-map-type logistic models of large wildfire. 
That is, a large fire is forecast if either the SFPO or our 
logistic models incorporating map types indicate a 20% or 
greater predicted probability of large fire. The horizontal 
lines in Fig. 7 show the direction of change in the false alarm 
and miss rates from the historical SFPOs to the forecasts 
constructed by combining the SFPOs with the output of our 
logistic models. Reductions in the false alarm and miss rates 
are plotted in green and represent positive values added by 
the logistic models, whereas increases in the false alarm and 
miss rates are shown in purple. The greatest reduction in the 
miss rate is achieved in NW11, where the logistic models 
correctly identify six large wildfires that the SFPOs missed 
out of the 66 total. 

–0.04*UMAP1

UMAP2

UMAP3

UMAP4

UMAP5

UMAP6

UMAP7

50
0-

hP
a 

m
ap

 ty
pe

UMAP8

UMAP9

UMAP10

UMAP11

UMAP12

UMAP13

SC_Y ERC_Y BI_Y IC_Y F100 F1000

Fire danger index

FMH FMW VPDM KBDI

–0.07*** –0.05** 0.06*** 0.10*** 0.02 0.02 –0.00 –0.10***–0.01

–0.04* –0.02 –0.05** –0.00 –0.04** 0.00 –0.01 0.01 –0.00–0.09***

–0.12*** –0.10*** –0.12*** 0.06*** 0.07*** 0.01 0.01 –0.06*** –0.10***–0.09***

–0.32*** –0.28*** –0.32*** 0.22*** 0.17*** 0.09*** 0.09*** –0.32*** –0.14***

Correlation
0.4

0.2

0.0

–0.2

–0.4

–0.35***

–0.17*** –0.16*** –0.18*** 0.14*** 0.12*** –0.03* –0.02 –0.19*** –0.07***–0.17***

–0.09*** –0.11*** –0.10*** 0.14*** 0.10*** –0.01 0.01 –0.15*** 0.03–0.13***

0.04** 0.05** 0.06*** –0.04* –0.04* 0.07*** 0.05** 0.04* –0.04*0.05**

–0.00 –0.04** –0.02 0.06*** 0.05** 0.03 0.04** –0.08*** 0.04**–0.05***

0.19*** 0.19*** 0.20*** –0.17*** –0.12*** –0.09*** –0.08*** 0.29*** 0.11***0.27***

0.08*** 0.09*** 0.09*** –0.08*** –0.05** –0.08*** –0.08*** 0.12*** 0.05**0.14***

0.08*** 0.12*** 0.10*** –0.11*** –0.10*** –0.04** –0.05** 0.13*** 0.030.12***

0.21*** 0.20*** 0.22*** –0.17*** –0.15*** –0.05*** –0.05** 0.13*** 0.14***0.19***

0.10*** 0.06*** 0.08*** –0.05** –0.03 –0.04** –0.04** 0.04** 0.04**0.08***

Fig. 5. Correlations between map type indicators and GACC-level daily fire danger indices. Map type indicators are coded 
dichotomously with 1 for days when the map type was observed and 0 for days when a different map type was observed. 
Note: *** P < 0.01; ** P < 0.05; * P < 0.10.    
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Discussion and conclusions 

This research demonstrates that the set of 500-hPa map types 
currently utilised by Predictive Services at the NWCC has 
predictive value that can supplement the use of fire danger 
indices in near-term wildfire forecasting. These map types 
resolve subtypes within broad synoptic patterns (e.g. upper- 
air ridges and troughs) that have spatially heterogeneous 
effects on daily ignition counts. The map type effects estimated 
in our analysis shift expectations of ignition counts conditioned 
on surface-based fire danger indices alone. Additionally, fore
casts of significant wildfire that incorporate our logistic models 
improve on the accuracy of historical SFPOs. 

This study extends prior research by isolating the predic
tive value added by incorporating synoptic map typing into 
short-term spatially explicit wildfire forecasting in the 
northwestern US. Our subregional models demonstrate 
that synoptic patterns explain variation in ignition counts 
that is not captured by fire danger indices alone. Similarly to 

earlier studies linking daily synoptic patterns to surface- 
based fire danger indices (Newark 1975; Crimmins 2006), 
we find that severe fire weather is associated with ridging 
patterns. Also consistent with prior research (Skinner et al. 
2002; Gedalof et al. 2005; Sharma et al. 2022), our analysis 
finds that positive anomalies in the 500-hPa geopotential 
heights are associated with increased wildfire activity. 
Although the impact of positive height anomalies on wild
fire occurrence is reflected in fire danger indices, we find 
that offshore troughs, exemplified by UMAP 2, are associ
ated with both heightened wildfire risk and lower values of 
surface-based fire danger indices. These results may be 
explained by increased lightning activity associated with 
these patterns, which is observed during our study period 
when UMAP 2 occurs (see Fig. A1). Rorig and Ferguson 
(1999) identify a similar synoptic pattern as being associ
ated with dry lightning events. 

Although this set of map types is useful in forecasting 
ignition counts, they are less informative for predicting the 

Table 2. Akaike weights for negative binomial models of ignition counts               

Model specification NW01 NW02 NW03 NW04 NW05 NW06 NW07 NW08 NW09 NW10 NW11 NW12   

Ignitions = f(SC_Y) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ignitions = f(ERC_Y) 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ignitions = f(BI_Y) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ignitions = f(IC_Y) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ignitions = f(F100) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ignitions = f(F1000) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 

Ignitions = f(FMH) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ignitions = f(FMW) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ignitions = f(VPDM) 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 

Ignitions = f(KBDI) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ignitions = f(UMAP, SC_Y) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ignitions = f(UMAP, ERC_Y) 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ignitions = f(UMAP, BI_Y) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ignitions = f(UMAP, IC_Y) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ignitions = f(UMAP, F100) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ignitions = f(UMAP, F1000) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 

Ignitions = f(UMAP, FMH) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ignitions = f(UMAP, FMW) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ignitions = f(UMAP, VPDM) 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 

Ignitions = f(UMAP, KBDI) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ignitions = f(BestFD) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ignitions = f(UMAP, BestFD) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Cells indicate the Akaike weights for negative binomial models of ignition counts, with the best-fitting model for each Predictive Service Area (NW01–NW12) in 
each set highlighted. The first 10 rows correspond to models fitted using each fire danger index, in turn. The second set of 10 models pairs each fire danger index 
with the set of map type indicators. The final two rows compare the best-fitting fire-danger-only model against the best fitting with-map-type model for 
each PSA.  
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occurrence of large fires. This is likely because the growth of 
fires to reach operational thresholds and become large often 
occurs over multiple days (Podschwit et al. 2018). 
Specifically, whether a fire grows is contingent on a number 
of factors, including the weather on days subsequent to igni
tion (Potter and McEvoy 2021) as well as fuel dryness and 
continuity (Barbero et al. 2014). Despite the lack of statistical 
significance in the logistic models of large fire, we find that 
using these models improves on the performance of historical 
SFPOs. This formal modelling complements and reinforces the 
qualitative understanding that fire weather meteorologists 
have of the impact of these map types on wildfire occurrence. 
Incorporating this set of discrete synoptic patterns into igni
tion count models improves the specificity of fire weather 
forecasts over models built using fire danger indices alone. 

The effects of synoptic patterns that evolve over multiple 
days can be explored by considering transitions between map 
types. We conducted analyses to assess how the impact of a 
given map type was moderated by the next-day map type (see  
Fig. A2). Visual inspection of these transitions suggests that 

considering 2-day sequences may uncover moderating effects. 
However, one statistical challenge posed by this approach is 
the large number of possible transitions between map types 
and the small number of observations of each, which reduces 
statistical power to detect significant effects. Additionally, 
considering 2-day sequences may exacerbate the measure
ment error in both identifying when transitions occurred 
and when fires ignited. 

Future work in this area may focus on trade-offs between 
the simplicity and interpretability of a set of synoptic map 
types and their explanatory power. Specifically, several of 
the map types in this set of 13 appear to exert similar effects 
on wildfire and may be combined. Alternatively, other 
dimensionality reduction methods may be employed to 
identify synoptic states that operate on larger or different 
geographic areas. Our approach has generated interest from 
Predictive Service units in other regions, demonstrating the 
potential of our co-production approach to be applied in 
other geographic areas to identify the unique and complex 
influence of synoptic patterns in those domains. 

Table 3. Akaike weights for logistic models of large wildfire.               

Model specification NW01 NW02 NW03 NW04 NW05 NW06 NW07 NW08 NW09 NW10 NW11 NW12   

Large = f(SC_Y) 0.03 0.09 0.48 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 

Large = f(ERC_Y) 0.10 0.03 0.02 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Large = f(BI_Y) 0.86 0.87 0.49 0.00 0.00 0.00 0.00 0.00 0.10 0.03 0.00 0.00 

Large = f(IC_Y) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 

Large = f(F100) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Large = f(F1000) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Large = f(FMH) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Large = f(FMW) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Large = f(VPDM) 0.00 0.00 0.01 0.85 1.00 1.00 1.00 1.00 0.70 0.97 1.00 1.00 

Large = f(KBDI) 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Large = f(UMAP, SC_Y) 0.02 0.01 0.21 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 

Large = f(UMAP, ERC_Y) 0.09 0.15 0.07 0.54 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 

Large = f(UMAP, BI_Y) 0.48 0.83 0.57 0.02 0.00 0.00 0.00 0.00 0.12 0.02 0.00 0.00 

Large = f(UMAP, IC_Y) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.47 0.00 0.00 0.00 

Large = f(UMAP, F100) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Large = f(UMAP, F1000) 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Large = f(UMAP, FMH) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Large = f(UMAP, FMW) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Large = f(UMAP, VPDM) 0.00 0.00 0.02 0.37 1.00 1.00 1.00 0.99 0.27 0.98 0.95 1.00 

Large = f(UMAP, KBDI) 0.40 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Large = f(BestFD) 1.00 0.96 1.00 0.99 0.00 0.01 0.87 0.75 0.87 0.03 0.00 0.85 

Large = f(UMAP, BestFD) 0.00 0.04 0.00 0.01 1.00 0.99 0.13 0.25 0.13 0.97 1.00 0.15 

Cells indicate the Akaike weights for logistic models of large wildfire, with the best-fitting model for each Predictive Service Area (NW01–NW12) in each set 
highlighted. The first 10 rows correspond to models fitted using each fire danger index, in turn. The second set of 10 models pairs each fire danger index with the 
set of map type indicators. The final two rows compare the best-fitting fire-danger-only model against the best fitting with-map-type model for each PSA.  
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Fig. 6. PSA-level incidence rate ratios for the map types, controlling for daily fire danger index, year and day of week. These 
effects indicate the factor by which observing each map type shifts expected daily ignition counts in each PSA based on fire 
danger indices alone. The statistical significance of these effects is indicated by hatching (ns, not significant).    
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Fig. 7. Comparison of false alarm and miss rates for 
large fires between historical Significant Fire Potential 
Outlooks (SFPOs) and predictions that also incorpo
rate the results of the with-map-type logistic models 
presented here, for each of the 12 predictive service 
areas in the Northwest (NW01–NW12). Reductions in 
the false alarm and miss rates represent positive value 
added by the logistic models and are indicated by 
green lines. Increases in the false alarm and miss rates 
due to the incorporation of the logistic models are 
shown in purple.   
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Fig. A1. PSA-level lightning strike density by map type. Darker shading indicates fewer daily strikes per square kilometre, while 
lighter shading indicates higher strike density.   
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Fig. A2. GACC-level wildfire risk by map type transition. The shading of cells in the leftmost column indicates the 
probability of observing a high-ignition day for each map type, and each cell in this column is labelled with the probability 
of that map type occurring. The shading of cells in the rightmost 13 columns indicates the probability of a large fire starting 
given the ignition-day and next-day map types. These cells are labelled with the probability that each next-day map type 
will occur, conditional on ignition-day map type.   
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