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Pyros: a raster–vector spatial simulation model for predicting 
wildland surface fire spread and growth 
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ABSTRACT 

Background. Euro–Mediterranean regions are expected to undergo a climate-induced exacer
bation of fire activity in the upcoming decades. Reliable predictions of fire behaviour represent an 
essential instrument for planning and optimising fire management actions and strategies. Aims. 
The aim of this study was to describe and analyse the performance of an agent-based spatial 
simulation model for predicting wildland surface fire spread and growth. Methods. The model 
integrates Rothermel’s equations to obtain fire spread metrics and uses a hybrid raster–vector 
implementation to predict patterns of fire growth. The model performance is evaluated in 
quantitative terms of spatiotemporal agreement between predicted patterns of fire growth 
and reference patterns, under both ideal and real-world environmental conditions, using case 
studies in Sardinia, Italy. Key results. Predicted patterns of fire growth demonstrate negligible 
distortions under ideal conditions when compared with circular or elliptical reference patterns. In 
real-world heterogeneous conditions, a substantial agreement between observed and predicted 
patterns is achieved, resulting in a similarity coefficient of up to 0.76. Conclusions. Outcomes 
suggest that the model exhibits promising performance with low computational requirements. 
Implications. Assuming that parametric uncertainty is effectively managed and a rigorous validation 
encompassing additional case studies from Euro–Mediterranean regions is conducted, the model has 
the potential to provide a valuable contribution to operational fire management applications.  

Keywords: agent-based model, Euro–Mediterranean, fire behaviour, fire management, fire 
suppression, Italy, Rothermel model, Sardinia, spatial simulation model. 

Introduction 

An annual global average of 400–500 million ha of vegetation burnt between 2002 and 
2016 (Giglio et al. 2018; Bowman et al. 2020). Anthropogenic factors represent the most 
prevalent source of fire ignitions in Euro–Mediterranean countries (Ganteaume and 
Syphard 2018; Cattau et al. 2020). Moreover, the tendency towards a massive abandon
ment of traditional rural practices, together with the promptness and effectiveness of fire 
suppression strategies, is responsible for increasing landscape homogeneity, fuel accumu
lation and fuel continuity (Turco et al. 2016; Kelley et al. 2019; Salis et al. 2019; Mantero 
et al. 2020). Nevertheless, anthropogenic factors alone are unable to explain the com
plexity of changes in global fire activity (Pausas and Keeley 2021). Despite uncertainties 
associated with climate projections, studies at a global and local scale have pointed out 
the key influence of climate trends in exacerbating fire activity, in terms of either fire 
season length, fire occurrence or intensity, especially in Euro–Mediterranean regions 
(Flannigan et al. 2009, 2016; Jolly et al. 2015; Williams and Abatzoglou 2016; Turco 
et al. 2018; Forkel et al. 2019; Dupuy et al. 2020). 

Accurate simulations of predicted spatiotemporal patterns of fire growth are of 
prominent importance for planning and optimising prompt intervention strategies to keep 
the fire spread under control before it could overwhelm the suppression capability of fire 
management agencies (Tedim et al. 2018). The growing availability of computational 

For full list of author affiliations and 
declarations see end of paper 

*Correspondence to:
Debora Voltolina
National Research Council, Institute of
Environmental Geology and
Geoengineering,  Via Mario Bianco 9,
20131 Milan, Italy
Email: debora.voltolina@cnr.it

Received: 2 July 2022 
Accepted: 10 November 2023 

Published: 8 March 2024 

Cite this: 
Voltolina D et al. (2024) 
International Journal of Wildland Fire 33, 
WF22142.  
doi:10.1071/WF22142 

© 2024 The Author(s) (or their 
employer(s)). Published by 
CSIRO Publishing on behalf of IAWF.  
This is an open access article distributed 
under the Creative Commons Attribution- 
NonCommercial-NoDerivatives 4.0 
International License (CC BY-NC-ND) 

OPEN ACCESS  
Collection: ICFFR 

https://www.publish.csiro.au/
https://www.publish.csiro.au/
https://doi.org/10.1071/WF22142
www.publish.csiro.au/wf
www.publish.csiro.au/wf
https://orcid.org/0000-0001-9186-0644
https://orcid.org/0000-0002-7137-3969
https://orcid.org/0000-0002-0152-6704
https://orcid.org/0000-0003-0091-9167
mailto:debora.voltolina@cnr.it
https://doi.org/10.1071/WF22142
https://creativecommons.org/licenses/by-nc-nd/4.0/


resources has fuelled the development of a considerable num
ber of simulators for wildland surface fire behaviour model
ling, each characterised by different scales of interest and 
diverse purpose of the study. Sullivan (2009a, 2009b,  
2009c) accomplished an exhaustive review of the strategies 
adopted to model fire spread and growth, classifying them 
into three broad categories: (1) physical and quasi-physical 
models, which take advantage of the fundamental principles 
of the physics and chemistry of the process of combustion to 
model the fire spread; (2) empirical and quasi-empirical mod
els, which are essentially based upon statistical analysis of fire 
spread observations and laboratory or field experiments; and 
(3) simulation and mathematical analogue models, which 
implement either of the previous classes of models to simulate 
the spatial and temporal growth of the flame front in two or 
three dimensions across a landscape. 

Physical and quasi-physical models are renowned for their 
potential to replicate the emergent behaviour of complex 
wildland fires. To cite an example, coupled atmosphere– 
fire models can solve the spatiotemporal variability of air
flows over complex terrains while also capturing the 
fire–atmosphere feedback responsible for fire-induced 
winds. However, their computational costs still challenge 
their use in faster-than-real-time applications (Coen 2018). 
On the other hand, empirical and quasi-empirical models 
simplify the complexity of the interactions between fire 
and the environment, resulting in higher computational 
efficiency. This is one of the rationales behind the wide
spread use of empirical models as operational tools by fire 
management agencies (Alexander and Cruz 2013a). 

Simulation and mathematical analogue models integrate 
a broad spectrum of approaches to represent fire growth, 
ranging from purely vector to purely raster implementations 
and including a wide variety of hybrid solutions. Popular fire 
simulators, such as FARSITE (Finney 1998) and Prometheus 
(Tymstra et al. 2010), simulate fire growth by means of a 
vector implementation based on the Huygens’ wavelet prin
ciple, which states that each point on the flame front 
becomes a new source of ignition. Leveraging a Lagrangian 
approach, such simulators represent the fire front as a closed 
curve discretised through a growing number of points, each 
expanding based on a given spread model. As the complexity 
of the fire front shape increases at each time step, the 
computational efficiency of the Lagrangian approach is pre
served by progressively reducing the number of points 
approximating the fire front. An increasingly adopted 
Eulerian alternative to the Lagrangian approach is the level 
set method (Mallet et al. 2009; Ghisu et al. 2014; Muñoz- 
Esparza et al. 2018; Alessandri et al. 2021). The level set 
method focuses on the changes that take place at a given 
point in space as the fire front passes, boasting the advantage 
of implicitly solving the behaviour of merging fire fronts 
(Bova et al. 2016). At the other end of the spectrum, raster 
implementations adopt localised sets of evolution rules to 
simulate fire growth across contiguous neighbouring cells. 

The minimum travel time method is a common expansion 
algorithm used to define the mechanism of interaction 
between cells and the environment and is frequently 
expressed by cellular automata (CA) or agent-based models 
(ABMs). Both CA and ABMs can simulate fire spread and 
growth as stochastic processes in which the propagation of 
the fire front towards the neighbouring cells is modelled via 
a probabilistic approach (Alexandridis et al. 2008; Ntinas 
et al. 2017; Freire and Castro DaCamara 2018; Rui et al. 
2018; Trucchia et al. 2020; Katan and Perez 2021), or more 
rarely, via a deterministic approach using rules based on 
physical or empirical models (Hernández Encinas et al. 
2007; Collin et al. 2011; Trunfio et al. 2011; Ghisu et al. 
2015; Pais et al. 2021). Simplicity of development, better 
portability to parallel computing environments and higher 
computational efficiency are among the advantages of raster 
implementations over vector implementations. Nevertheless, 
patterns of fire growth predicted by raster implementations 
can suffer from substantial distortion because of the con
straints of the directions of movement that are limited to 
the number of cells in the neighbourhood; as a result, under 
homogeneous environmental conditions, the heading portion 
of the fire front might assume an angular rather than 
rounded shape (Ghisu et al. 2015). The use of larger neigh
bourhoods partially allows mitigating such distortions under 
homogeneous conditions, at the cost of an increasing com
putational effort, and still produces distortions under heter
ogeneous conditions (Finney 2002). Other approaches were 
adopted to reduce distortions, such as a hybrid raster–vector 
implementation, where a local ellipse expands from each cell 
towards the neighbouring cells without restricting the loca
tion of the ignition points to cell centroids (Trunfio et al. 
2011), or the application of empirical correction factors 
defined by optimisation processes (Ghisu et al. 2015). 

The most recent literature reveals the tendency towards 
the integration of state-of-the-art machine-learning techniques 
into different fields of wildfire science, including predictive 
fire behaviour simulation modelling (Jain et al. 2020). Some 
studies trained artificial neural networks to accurately emu
late fire growth patterns predicted by different traditional 
modelling approaches based on vector implementations, 
e.g. FARSITE or the Lagrangian solver ForeFire (Filippi et al. 
2010), at a fraction of their computational costs (Hodges and 
Lattimer 2019; Allaire et al. 2021). Fewer studies trained 
data-driven learning-based algorithms to predict the rate of 
fire spread based on real-time measurements (Zhai et al. 
2020) or to predict the areas surrounding a given initial fire 
perimeter that are expected to burn within the following 24 h 
(Radke et al. 2019). Nevertheless, the limited availability of 
accurate real-world rate of spread measurements still chal
lenges a wider application of such approaches. 

Although existing wildland fire behaviour models serve 
as valuable foundational tools, there are compelling reasons 
for considering the development of alternative models rather 
than relying uniquely on existing ones. Existing models may 
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not easily adapt to the increasing computational capabilities or 
the evolving scientific knowledge on fire behaviour without 
significant modifications. Alternative tailored models can 
leverage these advancements, potentially providing a more 
accurate representation of fire dynamics. 

This study aims to explore the potential of a hybrid 
modelling approach to provide reliable and timely informa
tion on the expected behaviour of wildland surface fires. The 
following sections introduce and evaluate the performance 
of Pyros, a spatial simulation model for predicting patterns 
of wildland surface fire spread and growth across heteroge
neous landscapes. The design and implementation of Pyros 
spanned 6 years, with the rationale to identify and develop a 
comprehensive faster-than-real-time modelling framework 
with potential for operational applications. Pyros strives to 
complement existing simulators, integrating features from 
different models. Indeed, Pyros combines the Rothermel 
quasi-empirical mathematical model (Rothermel 1972), 
one of the most extensively employed in operational context 
(Cruz et al. 2018), with a hybrid raster–vector implementa
tion of an ABM to simulate fire growth in heterogeneous 
environmental conditions, potentially capturing and taking 
advantage of both the physics of fire spread and the dynamic 
behaviour emerging from ABMs. 

Methods 

Model overview 

Conceptually, Pyros integrates a first subprocess, which com
putes the metrics relative to the fire spread, and a second 
subprocess, which simulates the fire growth accordingly. 

Fire spread subprocess 

Pyros implements a deterministic approach where the 
magnitude and the prevalent direction of the surface fire 
spread are defined by the Rothermel quasi-empirical math
ematical model (Rothermel 1972), with modifications by  
Albini (1976). The original formulation of the Rothermel 
model assumes that a flame propagates with a constant 
speed in idealised conditions of spatial homogeneity and 
isotropy, a condition referred to as steady state. However, 
fire spread is rarely constant in real-world environments, so 
the steady state assumption requires the explicit definition 
of a time interval over which fire behaviour properties are 
constant (Finney et al. 2021). Heterogeneity and anisotropy 
in real-world environments are caused by the spatio
temporal variability in terrain morphology, wind fields 
and vegetation specific composition, structure, texture and 
moisture content, which together constitute the input vari
ables to the Rothermel model. The core output of the model 
is the rate of spread, whose formulation is rooted in the 
principle of the conservation of energy applied to a unit 
volume of fuel ahead of an advancing fire in a homogeneous 

fuel bed. The rate of spread is expressed by an algebraic 
relationship between the quantity of heat received by a unit 
of fuel, namely a heat source, and the quantity of heat 
required to heat the same unit of fuel to the ignition tem
perature, referred to as heat sink. The rate of spread R0 of a 
fire front propagating on a flat surface through a uniform 
fuel in the absence of wind is regulated by the relationship: 

R I
Q

= , (m min )0
r

b ig

1 (1)  

where the heat source is computed as the product of the 
reaction intensity Ir times the propagating flux ratio ξ, and 
the heat sink is defined as the product of the bulk density ρb 
times the effective heating number ε times the heat of 
preignition Qig. The maximum upslope rate of spread Rmax 
is computed by including the empirical correction factors for 
slope φs and wind φw in the computation: 
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The maximum rate of spread Rmaxh relative to the upslope 
direction is computed as: 
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where Dh is the vector sum of Ds and Dw, which are func
tions of the rate of spread R0 and of the empirical correction 
factors for slope φs and wind φw, respectively, ω is the wind 
direction relative to upslope and t is the elapsed time. 
Therefore, the direction α of the maximum rate of spread 
Rmaxh relative to upslope is: 
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Various adaptations are used in literature to compute the 
rate of spread in directions other than the upslope. The 
prevailing approach rests on the assumption that the single 
mathematical ellipse represents a suitable analytical approx
imation for patterns of fire growth under idealised homoge
neous environmental conditions (Glasa and Halada 2011;  
Andrews 2018). Despite no physical rationale being availa
ble yet and no laboratory or field data on fire growth having 
rigorously validated this assumption so far, shapes close to 
perfect ellipses have been observed to emerge from point- 
source fires in real-world environments (Finney et al. 2021). 
Therefore, for the purpose of this study, the rate of spread is 
computed in any given direction as a function of the maxi
mum rate of spread Rmaxh relative to upslope and of the 
eccentricity of an ellipse with the ignition point located at 
one of the foci, following Andrews (2018). 
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Fire growth subprocess 

Resting on Rothermel’s equations, this study implements a 
spatially explicit ABM to predict the dynamic behaviour of 
wildland surface fire and to simulate the expected spatio
temporal patterns of fire growth. 

ABMs are a class of flexible computational models that 
aims to emulate overall system behaviours and to predict 
complex system-level patterns and properties emerging from 
the interactions among individual entities, namely agents 
(Clarke 2014). Agents are discrete autonomous entities 
processing information and interacting with either the sur
rounding environment or other agents according to a pre
defined set of rules to make independent decisions and, 
eventually, learn and adapt to local conditions. The envir
onment is the spatial context in which agents act and inter
act, and it might be continuous or represented by a grid of 
discrete raster cells with specific attributes varying in space 
and time. 

The ABM presented in this study includes explicit spatial 
and temporal dimensions and adopts a hybrid raster–vector 
approach replicating fire growth by multiple elliptical vec
tor simulations interacting with a discrete raster environ
ment. The modelling approach is inspired by the Huygens’ 
wavelet principle, which considers each point along a fire 
perimeter as a potential source of new ignition. Starting 
from any source of ignition, the ABM computes the rate of 
spread in any direction assuming the fire perimeter to be 
elliptically shaped and assuming the source of ignition to be 
in one of the foci of the single mathematical ellipse. To 
reduce the computational effort, space is discretised into 
regular hexagonal raster cells with a fixed area and orienta
tion. Time is discretised as well in a regular succession of 
time steps, namely epochs, which might assume a variable 
length. The simulation of a succession of discrete epochs 
allows the model to capture at least part of the intrinsic 
spatiotemporal variability of time-dependent variables 
according to the input data availability. Indeed, the model 
dynamically responds to spatial and temporal variations in 
the environmental conditions by potentially updating fire 
spread metrics at every simulation epoch. 

The proposed model includes two classes of entities: 
hexagonal raster cells and fire agents. Fire agents are the 
sources of ignition of the elliptical fire growth vector simu
lation, whereas hexagonal raster cells represent the envir
onment fire agents act in and interact with. Each hexagonal 
raster cell is characterised by state variables that are experi
enced by the fire agents and can be both static, such as the 
spatial coordinates of the cell centre, or dynamic, such as 
the fire spread metrics estimated via the Rothermel’s model. 
The fire spread metrics include the maximum rate of spread 
relative to upslope, the direction of the maximum rate of 
spread, the eccentricity of the ellipse approximating the fire 
growth, and derived metrics such as fire length and width. 
Dynamic state variables also include an ignition epoch, 

defined as the minimum epoch number at which the cell 
ignites according to the final simulation. A hexagonal mesh 
was chosen because of its compactness and isotropy: the 
property of adjacent hexagonal cells with equidistant 
centres allows the simulation to closely approximate the 
circular radiation pattern proper of the fire growth under 
idealised isotropic environmental conditions (de Sousa and 
Leitão 2018). Each hexagonal raster cell can accommodate 
one or more fire agents, each representing an individual 
source of ignition and being characterised by static state 
variables referring to its spatial coordinates and to the epoch 
of its activation, i.e. the epoch following that of its 
emergence. 

Model initialisation and procedure 

The model initialisation is generic and adaptable to multiple 
scenarios and geographical sites with different spatial and 
temporal dimensions. The initialisation begins with the 
definition of the global conditions experienced by every 
model entity, including the total number of epochs, their 
length and the constants describing the geometry of the 
hexagonal grid cells. The hexagonal raster grid is initialised 
by using a flat-topped orientation and offsetting odd col
umns to produce an odd-q vertical layout. Then, for each 
cell, the model computes the fire spread metrics, namely the 
magnitude and direction of the maximum rate of spread as 
well as the fire length and width. For each cell, the ignition 
epoch is also initialised to a conventional value representing 
unburnt cells. Finally, the model retrieves a list of the initial 
ignition points, together with their location and outbreak 
time, and for each ignition point, instantiates a fire agent 
within the underlying raster cell. During each model epoch, 
a scheduler activates all the available fire agents, which take 
their own actions, eventually updating the ignition epoch of 
the hexagonal raster cells they interact with. 

The model consists of two core classes: the model class, 
which holds the global attributes, manages the fire agents, 
and oversees the global level of the model procedure; and 
the fire agent class. Each instantiation of the model class 
represents a specific model run including multiple fire 
agents, which are instantiations of the fire agent class. The 
implementation of the model procedure can be described 
iteratively as follows. At the beginning of each epoch, the 
model: (1) calculates the current epoch tn; (2) updates the 
list of fire agents available for that current epoch tn; and (3) 
executes the actions of the fire agents by activating them 
one at a time, following a sequential scheduling. During 
each epoch tn, each fire agent: (4) collects updated rate of 
spread metrics from the hexagonal raster cell; (5) calculates 
the resulting elliptical growth simulation for the correspond
ing epoch and the relative rate of spread metrics; (6) com
putes the location of a variable number of points along the 
ellipse perimeter; (7) for each point, collects the ignition 
epoch of the hexagonal raster cell in which the point is 
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accommodated; and (8) if the ignition epoch is greater than 
the current epoch tn, a child fire agent, which will act in the 
next epoch tn+1, is instantiated in the point location, and the 
ignition epoch of the hexagonal raster cell is updated setting 
it to the current epoch tn. The result of the model procedure 
iteration over multiple epochs is the simulation of the fire 
growth pattern that emerges from the ensemble of the igni
tion epochs of the hexagonal raster cells. Fig. 1 provides a 
visual representation of the model procedure, whereas Fig. 2 
shows a three-epoch simulation run in ideal homogeneous 
environments. 

The spatiotemporal extent of the model is variable and 
depends on the event scenario. Similarly, the model uses 
adaptive but proportional spatial and temporal resolution, 
depending on the event scenario and the available input 
data. The spatial and temporal resolution of the simulation 
can be manually adapted to the frequency distribution of the 
rate of spread values computed by the first model subpro
cess for the specific extent of the event scenario. For exam
ple, given a mean rate of spread of 5 m min−1 and a coarse 
spatial resolution, e.g. hexagonal cells with a long diagonal 
of 125 m in length, an appropriate epoch length would be 
25 min. A shorter epoch length, e.g. 5 min, would result in 
an underestimation of the fire growth because the vector 
simulation produced during a single epoch would not over
step any of the hexagonal cell boundaries, thus prematurely 
interrupting the fire growth. Conversely, a larger epoch 
length, e.g. 50 min, would cause an overestimation of the 
fire growth because the resulting vector simulation would 
reach multiple hexagonal cells in a single epoch. In this case, 
the fire growth might eventually overcome both natural and 
anthropic obstacles along its path, even if they are observ
able at the survey scale. 

Model testing and validation 

Pyros’s performance is assessed in qualitative and quantita
tive terms by comparing the predicted patterns of fire 
growth with the reference patterns for both ideal and real- 
world case studies. 

Ideal case studies 

The model is applied to simulate diverse ideal case studies 
conceptually grouped into five categories: (1) case no-wind 
no-slope, including a set of simulation run under simplified 
environmental conditions assuming the total absence 
of both the wind and the slope factors; (2) case slope 
no-wind, where only the slope factor φs is introduced to 
analyse its relative importance on the results; (3) case wind 
no-slope, where only the wind factor φw is introduced and 
both the vegetation sheltered and unsheltered conditions are 
tested; (4) case upslope wind, where both the slope factor 
φs and the wind factor φw are considered, but only the 
condition of wind blowing upslope is tested; and (5) case 

start

fill
growth_raster

with
UNBURNT

for each
ignition point

in
ignition_table

for each
epoch

in
1 ® N

for each
agent
where

epoch == current epoch
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if
growth value
greater than
agent epoch

create agent
(position = point, epoch = epoch+1)
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fire spread metrics [agent position]
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create agent
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Initialisation
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Fig. 1. Flowchart representing the model initialisation and 
procedure.  
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cross-slope wind, where both the slope factor φs and the 
wind factor φw are considered, and the effects of different 
wind directions relative to upslope are investigated. 

For each category of idealised conditions, different simu
lations were performed, and the resulting patterns of fire 
growth were arranged in grids of panels. Each grid compares 
multiple panels to represent the combined effect of only two 
changing environmental variables at a time while maintain
ing the others unchanged. Each panel illustrates a simulation 
generated under environmental conditions homogeneous in 
space and time. The spatial and temporal extent and resolu
tion are equal for all the panels in a single grid. The spatial 
resolution is always 1 m while the temporal resolution varies 
across grids and ranges from 3 to 6 min, according to the 
expected rate of spread values. Within each panel, the simu
lated pattern of fire growth is compared with the reference 
pattern of fire growth, assuming it to be a single mathemati
cal ellipse built by multiplying the maximum rate of spread 
value and the eccentricity computed for a single epoch by 
the total number of simulation epochs. 

Real-world case studies 

The model is applied to simulate real-world case studies, 
namely historical fire events that occurred in Sardinia, Italy, 
between 2016 and 2017. Information available for each 
event is summarised in Table 1. 

Located between 38°51′ and 41°15′N latitude and 
between 8°8′ and 9°50′E longitude, Sardinia is characterised 
by complex orographic patterns witnessing the succession of 
geodynamic events that have occurred in its geological 
history (Carmignani et al. 2016). The climate is typically 
Mediterranean, with hot and dry summers, marked by pro
longed periods of water deficit between May and September, 
and mild winters with a relatively homogeneous distribution 
of precipitation over time (Canu et al. 2015). The land cover 
is shaped by anthropic activities and dominated by agricul
tural lands and pastures, including the typical dehesas, agro
forestry systems originated by reducing tree density of 

Mediterranean forests and shrublands and favouring the 
grass layer by grazing or crop culture (Moreno and Pulido 
2009). Other relevant land cover type includes 
Mediterranean maquis and garrigue (with Phyllirea spp., 
Juniperus spp., Cistus spp., Olea europea L. var. sylvestris 
Brot., Arbutus unedo L., Erica arborea L., Pistacia lentiscus 
L., and Myrtus communis L.), and broadleaf forests domi
nated by oak formations with Quercus ilex L., Q. suber L., 
and Q. pubescens Willd. Needleleaf forests are scarcely rep
resented and primarily include pine plantations with Pinus 
pinea L. and P. halepensis Mill. (EEA 2018; Salis et al. 2021). 
According to the Autonomous Region of Sardinia (2020), 
Sardinia suffers from intense fire seasons, usually lasting 
from May to October, with the most intense events in 
July. More than 21 000 wildfire events with an area greater 
than 0.1 ha occurred in Sardinia between 2005 and 2019, 
burning an overall surface of 223 543 ha (14 900 ha per year 
on average). 

The selection of real-world case studies was guided by the 
availability of authoritative information on the location and 
outbreak time of the ignition points as well as on the delim
itation of the fire perimeters. The fire perimeters, namely 
the observed patterns of fire growth, were detected by the 
local Forestry Corps of the Autonomous Region of Sardinia 
through GPS ground surveys and validated through photo
interpretation, in compliance with regional and national 
policies. 

Owing to their proximity to wildland–urban interface 
areas, all the events selected as case studies were subject 
to intense fire suppression activities including both terres
trial and aerial strategies, mainly dispatched along roads 
and around residential areas. Information on the timing, 
location, and effectiveness of fire suppression activities con
ducted to contain and control the fire growth was retrieved 
from textual descriptions published in authoritative reports 
and local chronicles. Despite the high uncertainty related to 
the lack of georeferenced information, simulations were 
performed both with and without the implementation of 
fire suppression interventions because their contribution to 

Fig. 2. In the initial epoch t0, a fire agent is instantiated in the location of the initial ignition point to act in the epoch t1; the ignition epoch of the 
hosting hexagonal raster cell changes from the unburnt value to 0 (a). In the epoch t1, child fire agents are instantiated along the ellipse perimeter 
generated by the initial fire agent; the ignition epoch of the hosting hexagonal cells is updated to 1 (b). The model procedure is iterated over the 
epochs t2 (c) and t3 (d). Fire agent colours refer to the epoch of their emergence: purple for the initial epoch, t0, and yellow for the current 
epoch. Similarly, cell colours refer to their ignition epoch: white for unburnt.     

Table 1. Selected real-world case studies with authoritative information provided by the  Autonomous Region of Sardinia, Italy (2017a).        

Ignition date Ignition 
time (UTC) 

Burnt 
area (ha) 

Extinction 
time (min)   

Sagama 24 Aug. 2016 11:20 1841 420 

Isili 20 Jul. 2016 09:30 1603 720 

Gonnosfanadiga 31 Jul. 2017 12:00 2036 300   
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the evolution of the observed fire growth patterns is far from 
negligible. Fire suppression activities were implemented in 
the model as barriers consisting of a multiplicative factor of 
the rate of spread, ranging from zero, for fully successful 
interventions, to one, for no intervention. 

Data collection and preprocessing 

Pyros requires both dynamic and static input variables. 
Dynamic variables, characterised by high temporal variabil
ity, such as fuel moisture content and wind speed and direc
tion, are derived through estimations sourced from global 
reanalysis or remotely sensed assets and products with suit
able spatial resolution and revisit periods. Static variables, 
which exhibit negligible temporal variability over the course 
of a wildfire, such as terrain morphology or fuel model 
characteristics, are obtained from institutional datasets. 

Information on the spatiotemporal variability of live and 
dead fuel moisture fractions is derived from optical remote 
sensing systems by adopting empirical relationships already 
defined in literature for plant communities in Mediterranean- 
type climate regions (Chuvieco et al. 2004; García et al. 2008;  
Nolan et al. 2016), which relate vegetation indices, i.e. the 
Normalised Difference Vegetation Index (NDVI), with Land 
Surface Temperature (LST) estimates. 

Hourly horizontal wind speed and direction estimates are 
obtained from the ERA5-Land climatic reanalysis at a spatial 
resolution of 9000 m (Muñoz-Sabater et al. 2021). The mass 
conserving model implemented by Forthofer et al. (2009) is 
employed to downscale wind data to a 100 m spatial resolu
tion and to model wind field variations induced by local 
terrain morphology and vegetation patterns. Finally, the 
wind fields are adjusted to the midflame height that influ
ences the fire spread over surface fuels that are not sheltered 
by a canopy or through the surface fuel under a forest 
canopy using the unsheltered or sheltered wind adjustment 
factors, respectively (Andrews 2012). 

Slope and aspect maps are derived from the regional 
Digital Terrain Model (DTM), available with a 10 m spatial 
resolution (Autonomous Region of Sardinia 2010). 

For each event, a static map of fuel models is generated 
using an indirect approach. First, the land use map by the  
Autonomous Region of Sardinia (2008), with a minimum 
mapping unit of 0.75 ha in rural and natural areas (reference 
scale 1:25.000), is used as a reference for the definition of 
homogeneous land cover units. Then, static maps of fuel 
models are generated by assigning standard (Rothermel 
1972; Anderson 1982) and custom fuel models specifically 
developed for Sardinia (Duce et al. 2012) to the land cover 
units according to Salis et al. (2013, 2021). 

Static and dynamic input variables are provided to Pyros 
as independent raster objects with a common reference 
coordinate system and spatial resolution. The ETRS89 
Lambert azimuthal equal-area projection (EPSG:3035) is 
used to preserve the model applicability at a pan-European 

scale. The raster objects are resampled to 25 m by using the 
bicubic method for continuous variables and the mode 
for discrete variables. Finally, the raster objects are trans
formed into hexagonal raster objects (de Sousa and Leitão 
2017, 2018). 

Performance evaluation 

Model performance is quantitatively evaluated for ideal and 
real-world case studies by comparing the predicted patterns of 
fire growth with the reference ellipse or the actual observed 
fire growth, respectively. Binary confusion matrices and 
derived metrics are obtained based on the overlay of the 
predicted and expected fire growth hexagonal grid maps. 
The number of correctly classified hexagonal raster cells 
belonging or not belonging to the burnt class are referred to 
as true positives, tp, and true negatives, tn, respectively. 
Similarly, the number of cells that are either incorrectly 
assigned to the burnt class or that are not assigned to the 
burnt class are referred to as false positives, fp, or type I errors, 
and false negatives, fn, or type II errors, respectively. Metrics 
derived from the binary confusion matrix are frequently 
employed in literature to investigate and evaluate the predic
tive performance of fire behaviour models (Salis et al. 2016;  
Arca et al. 2019; Trucchia et al. 2020; Alessandri et al. 2021;  
Katan and Perez 2021; Radočaj et al. 2022). In this study, 
precision and recall were preferred among the derived metrics 
because they are unaffected by the spatial extent of the simu
lation domain. The precision is computed as the ratio of tp to 
the total number of cells classified as burnt by the model, 
namely tp plus fp. The precision reaches its maximum when 
the type I error is null. The recall, also referred to as sensitivity 
or true positive rate, is computed as the ratio of tp to the actual 
total number of burnt cells, namely tp plus fn. The recall peaks 
when the type II error is null. 

Precision = tp
tp + fp

(5) 

Recall = tp
tp + fn

(6)  

While type II errors are critical for operational fire manage
ment purposes, type I errors are more tolerated. However, to 
obtain a balanced measure that considers both type I and II 
errors, this study computes the F1-score, or Sørensen–Dice 
coefficient, as the harmonic mean of precision and recall. 
The F1-score evaluates the similarity between observed and 
simulated patterns of fire growth as a function of tp, fp, and fn; 
it varies between zero and one, indicating no agreement or 
perfect agreement between observed and simulated patterns, 
respectively. 

F score = 2tp
2tp + fp + fn1 (7)  
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Results 

Ideal case studies 

Pyros was tested under ideal simplified environmental con
ditions by comparing the predicted patterns of fire growth 
with the reference circular or elliptical patterns built using 
the expected rate of spread values predicted by the first 
model subprocess. Resulting simulations are presented in 
grids of panels for each category to visually interpret and 
evaluate the model performance. 

Overall, the predicted patterns of fire growth under ideal 
conditions show a high level of agreement with the reference 
radial or elliptical patterns. The model exhibits an average 
F1-score of 0.97, ranging from 0.80 to 0.99. The average preci
sion is 1.00, indicating a null type I error. The model shows an 
average recall of 0.95 if excluding cases relative to no-wind 
no-slope conditions with fuel model 8, where the expected fire 
spread is too modest to be appreciated at the spatial and tempo
ral scale of the analysis. The high recall indicates minimal, 
though not entirely negligible, type II errors. Further details 
regarding these metrics can be found in Supplementary 
Tables S1–S8. 

Case no-wind no-slope 

Simulations run under no-wind no-slope ideal conditions 
resulted in circular radiation patterns, in agreement with 
the model’s theoretical assumptions. The absence of wind 
and slope allows observing the joint effect of varying live or 
dead fuel moisture fractions and different fuel models on the 
predicted patterns of fire growth (Supplementary Figs S1 
and S2). As expected, grass fuel models (i.e. models 1, 2, and 
3, where grass is the primary fire carrier), and shrub fuel 
models (i.e. models 4, 5, and 6, where shrubs are the preva
lent fire carriers), sustain higher rates of spread compared 
with forest fuel model (i.e. models 8, 9, and 10, where fire 
mostly runs through surface fuels, such as forest litter and 
understorey). Increasing live and dead fuel moisture content 
reduces the expected spread rates, even though with varying 
intensity depending on the fuel model. Grass fuel models are 
more responsive to variations in the dead fuel moisture 
content, whereas shrub fuel models show a greater sensitiv
ity to variations in the live fuel moisture content. Indeed, the 
fuel load of grass fuel models is almost exclusively repre
sented by dead material, making these models more suscep
tible to variations in the dead fuel moisture content. By 
contrast, the fuel load of shrub fuel models is characterised 
by a greater fraction of live material, making them more 
susceptible to variations in the live fuel moisture content. 

Case slope no-wind and case wind no-slope 

With the introduction of the slope or wind factors, patterns 
of fire growth assume an elliptical shape: the length-to- 
width ratio increases with steeper slopes and stronger 

winds (Supplementary Figs S3 and S4). As expected, similar 
patterns emerge from the set of simulations run introducing 
the slope factor alone or the wind factor alone. Again, grass 
and shrub fuel models sustain higher rates of spread if 
compared with forest litter or understorey fuel models. 
This contrast is amplified in the case wind no-slope because 
of the sheltering effect of the canopy, which is accounted for 
using the wind adjustment factors (Andrews 2012). 

Case upslope, downslope, and cross-slope wind 

Finally, the combined influence of wind and slope factors is 
investigated considering all the possible wind directions rela
tive to upslope, including the two limiting cases of wind blow
ing upslope and downslope. As expected, the rate of spread is 
maximum for upslope winds and minimum for downslope 
winds. Patterns of fire growth produced by jointly increasing 
slope steepness and varying wind direction indicate that, for a 
wind speed of 3 m s−1 and for slope steepness greater than 20 
degrees, the topography seems prevailing in determining the 
direction of maximum rate of spread (Fig. 3). However, for a 
wind speed higher than 4 m s−1 and a slope steepness of 30 
degrees, the wind direction becomes prevalent in determining 
the direction of the maximum rate of spread (Supplementary 
Fig. S5). In the limiting case of downslope winds, variations in 
the predicted patterns produced by the combined effect of 
increasing slope steepness and increasing wind speed suggest 
that the slope factor prevails for higher steepness and lower 
wind speed, whilst the wind factor prevails for lower steepness 
and higher wind speed (Supplementary Figs S6 and S7). 

Real-world case studies 

Pyros was validated by simulating three different historical 
events that occurred in Sardinia, Italy, between July 2016 and 
July 2017. Pyros was provided with authoritative information 
on ignition location, outbreak time, and extinction or contain
ment time. Multiple simulations were achieved for each real- 
world case study to assess the model performance depending 
on the implementation of fire suppression activities. Barriers 
were dispatched along roads and around residential and 
industrial areas as reported by authoritative reports or local 
chronicles. Resulting simulations with and without fire sup
pression are reported for each of the three case studies to 
allow a first qualitative comparison of the predicted patterns. 
The model exhibits an average F1-score of 0.56 and 0.65 for 
simulations performed without or with fire suppression, 
respectively. The obtained average precision without and 
with fire suppression is 0.43 and 0.54, respectively, whereas 
the recall varies between 0.86 and 0.84, respectively. Further 
details on the metrics can be found in Table 2. 

Sagama 

The first case study occurred on 24 August 2016, and burnt 
an overall area of 1841 ha. According to the authoritative 
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Fig. 3. Case cross-slope wind: slope and wind direction. Input variables: dead fuel moisture fraction is 0.05; live fuel 
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1982). Simulation parameters: 1 m spatial resolution; 10 epochs of 3 min length.   
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report (Autonomous Region of Sardinia 2017a), the event 
originated from two distinct ignition points, 2000 m apart 
from each other, both located in the agricultural land north
east of the urban centre of Sagama, province of Oristano. 
The flaming front rapidly consumed the cured grasslands, 
travelling more than 6480 m in less than 420 min. Ground 
fire suppression activities were dispatched by fire manage
ment agencies along both the fire front and the right flank, 
i.e. the southern and the northwestern regions of the 
observed pattern of fire growth, respectively, to secure 
exposed residential areas and anthropogenic assets. Aerial 
firefighting interventions were dispatched along both fire 
flanks, but their effects were not simulated in this study 
because of the high uncertainty in their location, time of 
occurrence, and effectiveness. 

The average head fire rate of spread predicted by the first 
model subprocess is 14.3 m min−1, 7.1% slower compared 
with the average head fire rate of spread of 15.4 m min−1, 
which can be estimated from the observed pattern of fire 
growth. The comparison between the predicted and the 
observed pattern of fire growth results in a F1-score of 
0.72 without fire suppression interventions (Fig. 4a). The 
performance improves with the introduction of barriers 
dispatched along roads to protect residential areas, resulting 
in a percentage increase of 5.6% in the F1-score (Fig. 4b). 
However, while the implementation of fire suppression 
activities successfully increases the precision by 11.6%, 
thus reducing the total overprediction, it also reduces the 
recall by 3.4%, slightly increasing the total underprediction, 
reasonably because of an overestimation of the effectiveness 
of fire suppression actions. 

Despite the implementation of fire suppression, fire 
growth is overpredicted along both fire flanks, i.e. the east
ern and western regions of the observed pattern. Conversely, 
fire growth is systematically underpredicted in the south
western region. Such discrepancies in the predicted and 
observed patterns should be ascribed to multiple concomi
tant reasons. Firstly, the uncertainty in the timing, location, 
and effectiveness of fire suppression actions led to an intrin
sic overprediction of the simulated fire growth pattern along 
both fire flanks. Secondly, while the authorities reported that 
the propagation was sustained by northeasterly winds of up 

to 8 m s−1, wind speeds reported by the ERA5-Land climate 
reanalysis are never higher than 4.6 m s−1, thus resulting in 
an underestimation of the length-to-width ratio of the pre
dicted fire growth. Lastly, results indicate an underestima
tion of the simulated pattern of fire growth in regions 
characterised by a higher environmental complexity if com
pared with the surrounding regions. For example, the south
western portion of the fire front is unable to overcome a 
terrain depression placed orthogonally to the direction of the 
maximum rate of spread, cut through by an intermittent 
river, and inhabited by a dense riparian broadleaf forest. 

Isili 

The second case study occurred on 20 July 2016, and burnt 
an overall area of 1603 ha. According to the authoritative 
report (Autonomous Region of Sardinia 2017a), the fire 
burst out from a single ignition point located in the agricul
tural land, northwest of the residential area of Isili, province of 
South Sardinia. Initial ground suppression efforts focused on 
the left fire flank, i.e. the northwestern region of the observed 
fire growth. Concurrently, aerial suppression operations 
targeted the fire front advancing towards northeast through 
a complex terrain morphology characterised by significant fuel 
load accumulations. The fire spread was sustained by south
westerly winds reaching velocities of up to 6.9 m s−1 and 
leading to the occurrence of frequent spotting events. 

The F1-score of similarity between predicted and observed 
patterns without fire suppression interventions is 0.56 
(Fig. 5a). The implementation of fire suppression interven
tions results in a 14.3% increase in the F1-score (Fig. 5b). The 
precision increases by 18.9%, from 0.43 to 0.53, partly reduc
ing the overprediction, whereas the recall decreases by 1.2%, 
from 0.81 to 0.80, slightly increasing the underprediction. 

Similarly to the Sagama case study, the simulation of fire 
suppression interventions alone is not sufficient to explain 
the overall overprediction, which is particularly evident in 
the western and northern portions of the predicted pattern 
of fire growth. It emerges an underestimation of the length- 
to-width ratio, resulting in an overestimation of both the 
flanking and backing rates of spread and an underestimation 
of the heading spread rate. Indeed, the predicted average 

Table 2. Quantitative model performance for the proposed real-world case studies.       

Case study Suppression Precision Recall F1-score   

Sagama No 0.61 0.89 0.72 

Barriers 0.69 0.86 0.76 

Isili No 0.43 0.81 0.56 

Barriers 0.53 0.80 0.64 

Gonnosfanadiga No 0.26 0.87 0.39 

Barriers 0.41 0.85 0.55 

The metrics refer to the comparison between observed and predicted patterns of fire growth for the reported extinction or containment time.  
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maximum rate of spread is 8.1 m min−1, 20.6% slower com
pared with the estimates that can be obtained from the 
observed pattern, according to which the fire front travelled 
7330 m along the west-east direction in 720 min. Also, the 
hourly wind speed estimated by the ERA5-Land climate 
reanalysis for the spatial and temporal extent of the event 
is never higher than 2.2 m s−1, while, according to the 
authoritative report, wind speed ranged as high as 
6.9 m s−1. Furthermore, a west–east gradient of increasing 
environmental complexity can be observed for this case 
study, and a complex terrain morphology is known to chal
lenge the mass conserving model by Forthofer et al. (2009), 
which was used to reduce wind fields at the scale of interest 
(Wagenbrenner et al. 2016; Quill et al. 2019). 

Gonnosfanadiga 

The third case study refers to a wildland fire that occurred 
on 31 July 2017. The local Forestry Corps identified a single 
ignition point in the agricultural land of Gonnosfanadiga, 
province of South Sardinia (Autonomous Region of Sardinia 
2017b). The event burnt an overall area of 2036 ha, damag
ing 355 ha of Mediterranean maquis and garrigue of the 
dune field. Ground fire suppression interventions were dis
patched to contain and control the propagation especially 
along major roads. Aerial fire suppression activities were 
conducted as well by nine aircraft of the local Forestry Corps 
and the State air fleet to support ground teams. 

The F1-score of similarity between observed and predicted 
patterns of fire growth shows a percentage increase of 41.0% 
following the implementation of ground fire suppression 
activities along the main roads placed orthogonally to the direc
tion of the maximum rate of spread (Fig. 6a, b). Similarly, the 
precision increases by 63.4%, from 0.26 to 0.41, while the recall 
slightly decreases by 2.3%, from 0.87. to 0.85. 

Although the simulation of fire suppression interventions 
resulted in a significant reduction of overall overprediction, 
the simulated pattern of fire growth still shows overprediction 
along the heading fire front and the right fire flank, i.e. the 
western and northwestern portions, respectively. Sustained by 
southwesterly wind speeds of 7.4 m s−1, the simulated aver
age heading spread rate of 50.0 m min−1 is only 6.4% higher 
compared with the average heading spread rate of 
47.0 m min−1 that is estimated assuming the observed fire 
front travelled 14 100 m in 300 min. Consequently, the back
ing fire spread rate is systematically underpredicted, espe
cially in the southeastern region, where vegetation patches 
classified as dense broadleaf forests also contributed to the 
observed slowdown of the fire spread and growth. 

Discussion 

A major issue in fire behaviour modelling is the ability to 
discern epistemic uncertainty, which is due to the 

incomplete scientific understanding of fire behaviour, from 
parametric uncertainty, which stems from the inherent spa
tial and temporal variability of the environmental condi
tions (Thompson and Calkin 2011; Finney et al. 2013;  
Cruz et al. 2017). From a theoretical perspective, model 
testing under ideal environmental conditions allows para
metric uncertainty to be minimised, thus highlighting the 
model’s strengths and weaknesses. While it is not possible to 
establish whether a simulation is reliable or not by observ
ing individual metrics or defining thresholds, patterns of fire 
growth predicted under ideal environmental conditions 
exhibit a nearly perfect agreement with the expected refer
ence patterns, and show an average similarity quantified as 
0.97 in terms of F1-score. Predicted patterns of fire growth 
range from circular patterns for fully isotropic conditions to 
elliptical patterns as the anisotropy increases because of 
terrain morphology and wind fields. Distortions compared 
with the target conceptual model are negligible. However, 
since reference patterns are directly derived from the 
Rothermel model assuming circular or elliptical patterns of 
fire growth, model testing with ideal case studies uniquely 
allows assessment of the performance of the fire growth 
model subprocess. 

Outcomes suggest the model behaves consistently with 
scientific understanding (although incomplete) of fire beha
viour (Finney et al. 2021). A remarkable variability in the 
predicted patterns of fire growth emerges when comparing 
different fuel models under idealised homogeneous environ
mental conditions. Grass and shrub fuel models sustain 
higher rates of spread compared with forest fuel models, 
where litter and understorey represent the main fire carri
ers, because of their intrinsically lower fuel loads and the 
effect of sheltering conditions. The fuel moisture content of 
live and dead fractions introduces minor variations in the 
predicted patterns of fire growth compared with wind fields 
and fuel loads, with marked differences among diverse fuel 
models depending on their abundance of live or dead fuel 
loads. Finally, although the infinite variety of wind and 
slope combinations makes it difficult to generalise the 
resulting effects on fire behaviour, the combined influence 
of wind and slope factors on fire spread rates and fire growth 
patterns is consistent with the available research (Finney 
et al. 2021): the interaction between slope and wind factors 
exhibits evolutional thresholds compatible with the beha
viour of the heading spread rate described in the literature, 
and both stronger winds and steeper slopes produce similar 
effects on the resulting patterns of fire growth. 

The model performance declines when simulating more 
complex real-world case studies. Comprehensively, pre
dicted patterns show a level of agreement with observed 
patterns that is quantified as an average F1-score of 0.65 for 
simulations implementing fire suppression activities 
(Table 2). The heading, backing, and flanking rate of fire 
spreads are both overpredicted or underpredicted in the 
diverse case studies. Uncertainty lies in the intrinsic 
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variability in the environmental conditions, the lack of 
detailed georeferenced information on the timing, location, 
and effectiveness of the conducted fire suppression actions, 
but also in model inaccuracies. 

The parametric uncertainty related to the intrinsic varia
bility in space and time of the environmental conditions 
arguably affected the model performance. Firstly, the 
model performance decreases with increasing terrain com
plexity, reflecting both the inheritance of the Rothermel 
model and the intrinsic uncertainty in wind measurements, 
with the relative difficulties in downscaling wind fields. 
Indeed, the mass conserving model employed in this study 
has already shown reduced accuracy in simulating lee-side 
flows and in the presence of turbulent rather than laminar 
flows (Forthofer et al. 2014; Wagenbrenner et al. 2016). In 
addition, the model performs better with grass and shrub 
fuel models, rather than with forest fuel models where the 
fire is carried by forest litter and understorey, suggesting the 
need for further investigations into the characterisation of 
fuel models. The assignment of fuel models to uniform land 
cover units requires a fully reproducible and less subjective 
methodology (Finney et al. 2021). Furthermore, land cover 
mapping rarely accounts for the vertical structure and 
distribution of the understorey, making it difficult to char
acterise the fuels representing the primary carrier of a sur
face fire spreading beneath a canopy as well as to estimate 
the wind speed beneath the canopy. Similarly, the estima
tion of the fuel moisture fraction in the understorey is 
challenging, especially when using remotely sensed space- 
borne datasets whose estimates are not validated with ground 
truth derived from either field sampling or continuous 
monitoring through fuel moisture sticks. 

Other major sources of uncertainty are related to the fire 
suppression activities conducted to control and contain the 
analysed events. Beside the lack of precise information on the 
location and timing of intervention, which unquestionably 
affects the accuracy of the results, suppression effectiveness 
is also complex to evaluate. The effectiveness of both offensive 
and defensive tactics is affected by environmental factors, by 
fire spread rates and intensities, and by specific characteristics 
of the intervention strategy, including the number of ground 
and aerial resources deployed, the drop frequency, or the use 
of suppressant additives on burning fuels rather than retar
dants applied to unburnt fuels ahead of the fire front 
(Alexander and Cruz 2013b; Thompson et al. 2017;  
Plucinski 2019a, 2019b). The implementation of fire suppres
sion interventions explains only part of the model overpredic
tion, while in some cases the interventions lead to further 
underprediction possibly because of an overestimation of their 
effectiveness. Moreover, the implementation of any fire 
suppression intervention as a simple barrier oversimplifies 
the complexity of its impact. Although sufficient to pre
liminarily assess the model response to fire suppression, this 
assumption is neither suitable for aerial fire suppression tactics 
nor ground strategies, such as backfires, where intentional 

fires are set along the inner edge of a fuel-free area to consume 
the fuel ahead of the fire front. 

Future perspectives 

While outcomes suggest the model is promising, they also 
indicate there is still room for improvement. 

Firstly, a consistent methodology for an accurate and 
near real-time estimation of the pre-fire environmental 
conditions needs to be defined and validated. The method
ology would benefit from the integration of newly available 
remote sensing assets and datasets that could provide con
stantly updated fuel model maps and fuel moisture content 
estimates to be validated with ground truth. Secondly, 
improvements in the characterisation of fuel models, espe
cially beneath the canopy, might improve the model’s 
ability to estimate wind speed profiles across the canopy. 
Finally, while model testing with ideal case studies might 
represent a preliminary sensitivity analysis, examining the 
model response to varying one or two factors at a time does 
not allow a proper exploration of the solution space. Future 
studies should aim to identify the most relevant sources of 
parametric uncertainty and estimate the uncertainty propa
gation through the model to quantify its impact on fire 
spread and growth. 

Additionally, the implementation of a wider range of fire 
suppression activities through diverse techniques and the 
use of accurate information on the timing, location, and 
effectiveness of the interventions would inevitably result 
in improved model performance. 

Furthermore, the model needs to be validated with a wider 
variety of real-world case studies across Euro–Mediterranean 
regions to obtain more consistent results on its performance. 
The proposed selection of real-world case studies strived to 
capture environmental conditions suitable to illustrate model 
capabilities and limitations; nevertheless, the selection of 
case studies is far from being representative of the environ
mental heterogeneity and complexity observable across 
Euro–Mediterranean regions. Predicted spatial and temporal 
patterns of fire growth and their level of agreement with the 
observed patterns need also to be compared with results 
obtained by other simulators, such as FARSITE (Finney 
1998), FlamMap (Finney and McHugh 2019), or the recently 
developed ForeFire (Filippi 2018) and Propagator (Trucchia 
et al. 2020) to better contextualise the model in the pano
rama of the existing simulators. 

Computation 

Required computations and simulations have been executed 
on an Intel Core i5-3320M CPU (2 core, 4 threads) 16 GB 
RAM DD3 1600. Depending on the spatiotemporal extent 
and resolution of the real-world case study, the estimated 
total CPU time ranged between 800 and 2000 s. Hence, 
using all the available logical threads, the computation 
time varied between 200 and 500 s. The computational 
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performance of Pyros can be further improved by the imple
mentation of compute kernels to move calculations on accel
erators such as graphic processing units (GPU). Preliminary 
tests using compute shaders on NVIDIA GeForce GTX 1050 
resulted in 20× faster computation times on the selected 
case studies. 

Conclusions 

Modelling wildland fire behaviour is a remarkably challeng
ing task. The complexity of predicting wildland fire spread 
and growth lies in handling various sources of uncertainty, 
ranging from epistemic to parametric uncertainty. 

A spatially explicit simulation model for predicting wild
land surface fire spread and growth, namely Pyros, was 
designed and developed. Pyros integrates the Rothermel 
quasi-empirical equations in a deterministic agent-based 
model adopting a hybrid raster–vector implementation for 
predicting patterns of fire growth across heterogeneous envir
onments. The model testing and validation under ideal and 
real-world conditions allowed a quantitative evaluation of the 
model performance, highlighting specific strengths and weak
nesses. Comprehensively, the model nearly replicated the 
reference patterns of fire growth under ideal environmental 
conditions and predicted with a substantial agreement the 
observed patterns in real-world case studies. The model also 
exhibited computational performance compatible with faster- 
than-real-time simulation. Although more robust validation is 
needed before Pyros can be elevated to the level of an opera
tional tool for supporting fire management strategies and 
emergency response activities, outcomes are promising, and 
future research has the potential to improve the model 
performance by addressing the propagation of parametric 
uncertainty and minimising causes of both underprediction 
and overprediction. 

Supplementary material 

Supplementary material is available online. 
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