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ABSTRACT 

Background. Wildfire simulators allow estimating fire spread and behaviour in complex 
environments, supporting planning and analysis of incidents in real time. However, uncertainty 
derived from input data quality and model inherent inaccuracies may undermine the utility of such 
predictions. Aims. We assessed the performance of fire spread models for initial attack incidents 
used in California through the analysis of the rate of spread (ROS) of 1853 wildfires. Methods. 
We retrieved observed fire growth from the FireGuard (FG) database, ran an automatic 
simulation with Wildfire Analyst Enterprise and assessed the accuracy of the simulations by 
comparing observed and predicted ROS with well-known error and bias metrics, analysing the 
main factors influencing accuracy. Key results. The model errors and biases were reasonable for 
simulations performed automatically. We identified environmental variables that may bias ROS 
predictions, especially in timber areas where some fuel models underestimated ROS. 
Conclusions. The fire spread models’ performance for California is in line with studies devel
oped in other regions and the models are accurate enough to be used in real time to assess initial 
attack fires. Implications. This work allows users to better understand the performance of fire 
spread models in operational environments and opens new research lines to further improve the 
performance of current operational models.  

Keywords: fire behaviour, fire simulation modelling, Rothermel, Wildfire Analyst. 

Introduction 

Wildfires are a natural disturbance that shape the ecosystems and landscapes (Pausas and 
Keeley 2009) although they are a growing threat to the environment, economical assets 
and population in many regions worldwide (Molina-Terrén et al. 2019). In fact, substan
tial amounts of financial resources have been invested in fire management aiming to 
reduce the damage associated with unintended consequences of wildfires and improve 
safety for the population (Liang et al. 2008; Cardil and Molina 2015; Stocks and Martell 
2016). Fire agencies rely on suites of wildfire analysis products that are designed to meet 
the needs of operational response and mitigation planning. Given the challenges that first 
responders and decision-makers were faced with to adequately predict fire spread and 
potential impacts, and dispatch the most appropriate resources every time a wildfire is 
detected in California, California Department of Forestry and Fire Protection (CAL FIRE) 
(2019), through a request for innovative ideas in March 2019, selected Wildfire Analyst 
Enterprise (WFA-e) to evaluate initial attack fires and calculate wildfire risk based on 
automatic simulations. In this project, automatic wildfire spread simulations are con
ducted aiming to (1) forecast risk days in advance to support operational decision making 
(readiness levels, resource allocation and release of timely and effective public warnings 
for disaster management (Cruz et al. 2018; Monedero et al. 2019; Ramirez et al. 2019)); 
(2) quantify asset and territory risk to inform on the most effective mitigation and asset 
hardening options. However, fire analysts can also generate on-demand spread pre
dictions in response to active incidents for safe fire suppression strategies and tactics. 
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These simulations are usually performed manually, adjust
ing the input data and calibrating the models in real time to 
optimise the model’s performance (Cardil et al. 2019). 

The wildfire rate of spread (ROS) is determined by fuel 
availability, topography and weather (Barrows 1951). Several 
mathematical approaches have been developed in the last 
decades aiming at predicting fire behaviour. However, semi- 
empirical approaches such as Rothermel’s model (Rothermel 
1972) have been the most widely used and evaluated fire 
spread models on Earth owing to simplicity in understanding, 
use and computational efficiency (Cruz and Alexander 2013;  
Cruz et al. 2018; Ascoli et al. 2022; Minsavage-Davis and 
Davies 2022). The capability of accurately predicting the fire 
spread is directly linked to the model’s inherent inaccuracy 
derived from its limitations and assumptions (Albini 1976;  
Ascoli et al. 2015; Vacchiano and Ascoli 2015) and input 
data quality, which are all factors that may undermine the 
utility of such predictions for decision-making (Cruz and 
Alexander 2013; Benali et al. 2017; Ramirez et al. 2019). 
Therefore, it seems essential to quantify the model’s perform
ance and identify factors leading to unsatisfactory biases and 
errors. Cruz and Alexander (2013) conducted a comprehen
sive survey of studies, gathering a database of 1278 paired 
predicted vs observed ROS values and analysed the accuracy 
of ROS models. Other studies in several fire-prone areas 
assessed how new improvements in current fire spread mod
els may enhance the performance relative to the older coun
terparts (Anderson et al. 2015; Cruz et al. 2018). More 
recently, Ascoli et al. (2022) used the Rothermel package 
in R (Vacchiano and Ascoli 2015) to test standard and cus
tom fuel models against a global fire behaviour dataset 
(BONFIRE) and analysed model performance in different 
fuel types and ecosystems. 

Recent advances in technology have allowed monitoring 
the fire progression of most wildfires every 15 min in the 
United States of America (USA) through the National 
Fireguard Detections product (FG). These data, when avail
able for use on a fire, provide unprecedented capabilities to 
analyse factors influencing fire behaviour and compare the 
observed and predicted ROS in fires distributed across dif
ferent and complex landscapes. Despite California being a 
major fire hotspot in the Americas, there is no extensive 
scientific analysis of operational fire spread models allowing 
analysing of their performance and drivers leading to model 
inaccuracies. This work assesses the predictive accuracy of 
the fire spread models currently used in California automat
ically in operational settings under different environmental 
conditions using 1853 fires from 2019 to 2021. The analysis 
identifies in what conditions the models may over- or under
estimate the ROS and, subsequently, the burned area and 
associated fire impacts on buildings and other assets. 
We highlight that the simulations were performed automat
ically with no manual refinement of input data or model 
adjustments (Cardil et al. 2019). The analysis is based 
on well-known error metrics and statistical approaches 

(Cruz et al. 2018) aiming to compare the predicted with 
observed ROS values. 

Methods 

Study area 

This study was developed in California (Fig. 1), a region 
dominated by mediterranean climatic conditions, known to 
foster recurrent large wildfires (Pyne et al. 1998). Fire-prone 
weather situations such as long and dry summers with 
thunderstorm episodes, low relative humidity and strong 
dry winds are typical of this region (Sugihara and Barbour 
2006). Specifically, from September to May, the dry Diablo 
and Santa Ana winds arriving from the Great Basin and the 
Mojave Desert, with high desiccating potential and high 
wind speed (Li and Banerjee 2021) boost high ROS. The 
main vegetation types are shrubs, coniferous forest and 
herbaceous fine fuels according to the United States 
National Land Cover Database (39.03, 18.59 and 13.47%, 
respectively) (Jin et al. 2019). Fuel load, specifically dead 
materials, has increased in forests since 2010 in large areas 
of the State owing to successful fire suppression, timber 
harvesting practices and recent insect disturbances, poten
tially leading to fast and intense wildfires (van Wagtendonk 
et al. 2018). 

Fire progression dataset (FireGuard) 

The National Fireguard Detections product (FG) provides 
wildfire detection and monitoring across the USA (US 
Department of Defense 2021). The program is operated in 
conjunction with the National Geospatial Intelligence 
Agency’s Firefly algorithm, which collects data from multi
ple sources and sensors, including imagery from satellites 
and unmanned aerial vehicles (National Guard Association 
2021). It allows the detection of new wildfires as well as 
areas of significant fire growth, which is especially useful in 
remote regions and during the first 24–48 h when this infor
mation is usually scarce. Updates on fire progression are 
often provided every 15 min. The product provides a set of 
independent polygons representing sections of the fire front. 
To obtain a quantitative fire behaviour dataset from the raw 
data, polygons are classified into incidents and perimeters 
are analysed to obtain relevant metrics like burned area, 
maximum ROS, weather, fuels and terrain conditions. 

To classify polygons into individual incidents (fires), we 
use a grid-growing clustering algorithm (Fig. 2; Zhao et al. 
2015). All polygon centroids are projected into a 3D grid 
covering the spatio-temporal dimensions of the dataset 
using a 3 km in space and 24 h in time cell size resolution. 
This process leads to a density 3D matrix representing the 
number of elements at each cell. Clusters are defined as 
those groups of interconnected cells with at least a given 
number of centroids (islands of connected valid cells within 
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the grid). To identify these clusters, we loop through the 3D 
matrix searching for a seed cell not belonging to any previ
ously found cluster and assign it a new cluster ID (identity). 
That initial cell is then expanded (grown) among all con
necting valid cells around it using a fast-marching method 
with eight degrees of freedom, and assigning the same 
cluster ID to all visited cells. This process is done iteratively 
until the loop is completed and all valid cells have an ID. 
The method assures that any FG polygon in the cluster has at 
least one neighbouring polygon within 2√2 cell size dis
tance, which is ~67 h in time and 8.4 km in space. 

Once all clusters are identified, polygons in each incident 
are ordered in time, increased in resolution (number of 
vertices), and trimmed down to remove overlapping sec
tions with previous polygons in time. Then a parent–child 
hierarchy of polygons is constructed based on the Hausdorf 
distance of each polygon with respect to the surrounding 
ones (Fig. 2). More explicitly, we compute and identify the 
vertices leading to the maximum distance from a point in 
a polygon to the closest point in the surrounding ones. 
If the child polygon is in contact with other polygons, the 

Hausdorf distance is computed only with respect to those 
shared vertices. If the child polygon is not in contact with 
any other polygon, it is assumed that it was created by 
spotting, and the Hausdorf distance is computed with respect 
to all polygons within the last 8 h. Polygons that have no 
valid distance vector are considered to be independent igni
tion sources not caused by any other polygon. The maximum 
ROS vector of a polygon is given by the Hausdorf distance 
vector divided by the arrival time difference between the 
parent and child polygon. Once the parent–child hierarchy is 
established, we can also compute all secondary spread vec
tors by computing the minimum distance from each vertex of 
the source polygon to the target one divided by the elapsed 
time between them. The number of these vectors will be 
equal to the number of vertices in the child polygon. 
Finally, to compute the overall perimeter length and burn 
area during the incident, a multi-polygon geometry repre
senting the overall fire perimeter of the incident at each time 
step is created by computing the dissolved union of all 
previous polygons in time (the union of polygons without 
internal vertices, Fig. 2). 

Ignitions – ROS (km/h)
<0.25

0.25–0.5

0.5–1

1–2
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Fire guard perimeters

California state perimeter

0 50 100 200
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Fig. 1. Wildfire ignitions retrieved from FireGuard in California from October 2019 to November 2021. Each fire has an 
associated rate of spread (ROS) for the first burning period (up to 8 h) obtained by averaging the ROS of all FG polygons by 
incident. The zoomed-scale box shows three fires with the associated FG polygons for the burning period (the largest fire is the 
Mountain View fire).    
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Through the Integrated Reporting of Wildland Fire 
Information (IRWIN) framework, which integrates different 
dispatch systems across the US, we automatically evaluated 
more than 30 000 fires in the study period (October 2019 to 
November 2021) from the reported locations. Of those inci
dents, a total of 1853 wildfires occurred in California and 
had FG data associated with their unique IRWIN IDs. We 
removed prescribed fires and wildfires with a duration less 
than 1 h and selected the first FG polygon later used as 
ignition source to simulate the fire growth. We used the 
first burning period (up to 8 h from the fire start) to compare 
the simulated ROS and observed ROS obtained with FG. In  
Fig. 3, we show four wildfires with associated ROS in each 
FG polygon and the fire simulation performed with WFA-e. 
To complete the fire behaviour dataset, fuel, terrain char
acteristics and weather conditions (see section 2.3 for fur
ther details) were assigned to each FG spread polygon 
through a polygon-based approach with zonal statistics. 

Fire modelling with Wildfire Analyst Enterprise 
(WFA-e) 

Fire modelling was carried out using WFA-e, which provides 
real-time analysis of wildfire behaviour and simulates the 
spread of wildfires to directly support multi-agency wildfire 
incident management. Currently, many public and private 

entities, such as natural resource agencies, electrical investor- 
owned utilities, insurance and forestry companies strongly 
rely on WFA-e, which facilitates planning and operational 
decision-making. We automatically simulated 1853 fires 
using the first FG polygon of each incident as an ignition 
source based on well-known semi-empirical fire spread mod
els currently used in California including Rothermel’s (1972) 
surface fire spread model, Van Wagner’s (1977) crown fire 
initiation model, Rothermel’s (1991) crown fire spread model,  
Albini’s (1979) spotting model, Andrews’ (2012) conversion 
factor and wind profile and the Minimum Travel Time evolu
tion algorithm (Finney 2002). Note that the simulations per
formed in the present work were executed automatically with 
forecast data and no adjustments in input data or models 
aiming to better understand the feasibility of fire behaviour 
predictions in operational settings. We calculated the average 
ROS from FG and the average simulated ROS with WFA-e 
during real fire duration up to 8 h after the fire ignition (first 
burning period; Fig. 3). 

Pre-fire improved high-resolution surface fuel types 
(Scott and Burgan 2005) and canopy characteristics maps 
(canopy cover, canopy height, canopy base height and can
opy bulk density) at 30-m pixel resolution were generated to 
perform the fire simulations. The fire behaviour outputs had 
the same spatial resolution (i.e. 30 m). The surface fuel maps 
modelled by Technosylva Inc. are updated bi-monthly and 
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Fig. 2. Extraction of ROS vectors from the FireGuard (FG) dataset: (a) retrieval and storing of the FG data in a database; 
(b) projection of FG polygons into a 3D matrix representing space and time. Clustering identification of hotspot islands inside the 
grid. (c) Example of a wildfire that shows the evolution in time of a set of FG polygons with their associated maximum ROS vector 
(bold line), the secondary spread vectors, and the overall perimeter (dashed yellow line). Vector colours are based on their ROS.   
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based on an object-based image analysis. This approach 
grouped homogeneous vegetation areas into vector objects 
later classified with machine learning algorithms (random 
forest) trained with ground-truth data (the overall classifi
cation accuracy was 90% using 30% of data for validation 
and 70% for training; see more details in the Supplementary 
Material S1). The canopy characteristics were derived from 
LiDAR data (US Geological Survey, USGS) when available 
and models trained with Sentinel 2-A in the rest of the State 
(r = 0.92). We leveraged hourly high-resolution weather 
data at 2 km using an optimally configured version of the 
Weather Research and Forecasting model. This mesoscale 
numerical weather prediction system was designed for oper
ational forecasting applications of everyday fire conditions, 
precipitation events and California’s notorious offshore 

wind events (Brewer and Clements 2020). Average wind 
fields at 10 m height above the ground were used to run 
the simulations. Nelson’s (2000) model was used to estimate 
dead fuel moisture content based on weather inputs. Live 
fuel moisture content was retrieved from Technosylva’s 
machine learning model trained with the US National Fuel 
Moisture Database (WFAS 2022). 

Statistical analysis 

We compared the ROS predicted by WFA-e and observed 
through FG based on four different well-known metrics 
(Cruz et al. 2018): (1) ROS residual representing the differ
ence between the predicted and observed ROS. Therefore, 
a positive residual indicates an overestimation; (2) mean 
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Fig. 3. Fire progression (FireGuard data) and simulation of four wildfires through Wildfire Analyst Enterprise (WFA-e) in 
California: (a) Mountain View fire (lat.  38.515; lon.  −119.465; 2020/11/17); (b) Chaparral fire (lat.  33.485; lon.  −117.399; 2021/ 
08/28); (c) Bridge fire (lat.  38.921; lon.  −121.037; 2021/09/05); (d) French fire (lat.  35.687; lon.  −118.55; 2021/08/18); fote that 
the FG polygons and WFA-e simulated fire progression have the same time duration.   
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absolute error (MAE), representing the average of the abso
lute error (Eqn 1); (3) mean bias error (MBE), representing 
the average bias between the predicted and observed values 
(Eqn 2); (4) mean absolute percentage error (MAPE), a 
measure of prediction accuracy of a forecasting method in 
statistics that expresses the accuracy in relative terms 
(Eqn 3). 

n
MAE =

WFA FGi
n i i=1 (1) 

n
MBE =

WFA FGi
n i i=1 (2) 

n
MAPE = 100 FG WFA

FGi

n
i i

i=1
(3)  

where FGi represents the ROS measured through FG, WFAi is 
the estimated ROS from WFA-e and n the number of 
wildfires. 

Statistical graphics were used to represent model errors 
and biases associated with the fire spread models (Cruz et al. 
2018). The outliers and the goodness of fit associated with 
the fire models were assessed through visualising residual 
plots and the aforementioned error and bias metrics. 
A histogram of raw residuals was plotted to examine 
whether the observations followed a normal distribution 
or were biased. Scatterplots were applied to identify out
liers, skewness and kurtosis. 

In order to statistically analyse the performance of the 
fire simulations considering major fuel type groups, we 
aggregated the Scott and Burgan (2005) fuel types in four 
categories as follows: Grass Fuel Types (GR, 101–109), 
Grass–Shrub Fuel Types (GS, 121–124), Shrub Fuel Types 
(SH, 141–149), and Timber–Litter–Understorey Fuel Types 
(TL, 161–189). 

Results 

The average ROS measured from FG data for all analysed 
fires was 0.55 km/h, with extreme fires with a sustained ROS 
of 1.45 and 2.91 km/h (quantile 95 and 99% respectively,  
Fig. 1). The fires spreading on timber areas were the fastest 
on average (0.66 km/h) compared with Grass (0.55 km/h), 
Grass–Shrub (0.48 km/h) and Shrub fires (0.42 km/h). The 
comparison between the observed and predicted ROS and 
the influence of the different environmental variables on 
ROS are evaluated in this section and Figs 4 and 5. Binning 
the mean MBE and MAE by fuel type and environmental 
factors exposed which factors a given simulation was most 
sensitive to. Fuel type was the key contributor to ROS bias 
and wind speed impacts were secondary. Both live and dead 
fuel moisture had noticeably smaller contributions to MBE, 
which implies improvements to fuel mapping and wind 
forecasts are the most critical pieces to a successful imple
mentation of the Rothermel spread model. 
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Fig. 4. Fire spread model’s performance analysis for 1853 wildfires that occurred in California in the 2019–2021 period: (a) 
histogram of ROS residuals by fuel type based on  Scott and Burgan (2005); (b) ROS mean absolute error (MAE); (c) ROS mean bias 
error (MBE); (d) ROS mean absolute percentage error (MAPE). GR: Grass Fuel Types 101–109; GS: Grass–Shrub Fuel Types 121–124; 
SH: Shrub Fuel Types 141–149; TL: Timber–Litter–Understorey Fuel Types 161–189.   

www.publish.csiro.au/wf                                                                                                      International Journal of Wildland Fire 

1497 

https://www.publish.csiro.au/wf


Overall accuracy of fire spread models 

The fire spread models had an average MAPE of 47% for 
automatic fire simulations although this error metric mean
ingfully varied among fuel types. Overall, the model pro
duced the best predictions for Shrub (SH, MAPE 26%), Grass 
(GR, MAPE 38%) and Grass–Shrub (GS, MAPE  39%) Scott 
and Burgan (2005) fuel types (Fig. 4). The lowest MAE 
(0.14 km/h), MBE (−0.07 km/h) and MAPE (26%) values 
were found for the SH fuel types, followed by GS and GR fuel 
types respectively (Fig. 4). Conversely, we found the highest 
MAE, MBE and MAPE in timber (TL) fuel types (Fig. 4) with 
a MAPE value of ~67%. Although fire spread models tended 
to underpredict ROS based on MBE values, the values were 
relatively low for GR, GS and SH fuel types, as shown in the 
histogram of ROS residuals (Fig. 4a, c). However, the models 
had a preponderant ROS underprediction bias in most timber 
fuels as shown by the histogram of ROS residuals, MAE and 
MBE metrics leading to the high MAPE (Fig. 4). 

Environmental factors influencing model 
accuracy 

The fire spread model’s accuracy was influenced by different 
environmental variables (input data) beyond fuel types 
including wind speed and fuel moisture (Fig. 5). Overall, 
high wind speeds led to ROS overestimation whereas the 
model’s ROS prediction was underestimated in fires with 
low wind speed, especially in the timber fires. Wind speed 
did not bias the ROS in SH fuel types but did bias the ROS in 
both GR and GS fuel types, especially when wind speed was 
higher than 20 km/h, as shown in Fig. 5. Although fire 
spread models systematically underestimated the ROS in 
timber fuel types, the median MBE of fires spreading 
under high wind speed conditions (>30 km/h) was low, 
probably because the crown fire spread models were acti
vated and predicted active crown fire activity, subsequently 
increasing the simulated ROS. However, note that the box
plot shown in Fig. 5 for high wind speed conditions 
(>30 km/h) and timber fuel types is very wide, represent
ing that single fire simulations may have high errors 
depending on environmental conditions and the activation 
of crown fire spread models. When active crowing fire 
behaviour was not predicted by the models owing to high 
canopy base high or low canopy bulk density, the ROS was 
generally lower than observed. 

Both live and dead fuel moisture had noticeably smaller 
contributions to MBE. High fine dead fuel moisture content 
(FMC; 1 h time lag) led to underestimations of ROS predic
tions in all fuel types and live fuel moisture content (LFMC; 
herbaceous and woody) impacted ROS depending on fuel 
types. Whereas the ROS on fuel types with grass fuel load 
(GR and GS) was biased by the herbaceous LFMC, fires 
spreading on SH fuel types were not biased as expected 
(Fig. 5). The opposite was found for woody LFMC, resulting 
in biased ROS only on GS and SH fuel types. 

Discussion 

Fire agencies rely on semi-empirical models to daily predict 
fire behaviour aiming at assessing fire risk and improving 
the safety and effectiveness of fire suppression operations 
(Cardil et al. 2019). Thus, it is a priority to better understand 
the model’s performance under different environmental con
ditions to prove the feasibility and accuracy of outputs and 
further improve the current fire models. In fact, Rothermel’s 
(1972) model is the most widely evaluated fire spread model 
on Earth (Cruz and Alexander 2013; Cruz et al. 2018). In the 
present paper, the observed (FG) and predicted (WFA-e) ROS 
were compared analytically with a dataset of 1853 fires 
based on well-known error and bias metrics (Cruz et al. 
2018). The amount, nature and quality of fire behaviour 
observations that FG data provide with extremely high tem
poral resolution have allowed a better understanding of the 
model’s performance and quantification of the effect of 
model input variables (i.e. fuel types, wind speed, fuel mois
ture content, etc.) on the model’s accuracy. The major cave
ats of previous research studies were associated with the 
availability of fire behaviour observations as well as 
inadequate input data (Cruz and Alexander 2013). Having 
overcome those obstacles, this analysis provides strong 
insights on the ROS predictions in operational environments. 

The errors of fire behaviour predictions found in this 
work may be derived from intrinsic limitations and assump
tions of fire spread models as well as external factors such as 
the quality of input data or local processes not captured by 
models (i.e. pyroconvection, local wind fields influenced by 
relief, etc.) (Ramirez et al. 2019) and the FG data. Although 
FG data provide unprecedented capabilities to validate the 
fire spread models, we recognise that small inaccuracies in 
the fire progression maps may occur, subsequently affecting 
the comparison between the observed and predicted ROS 
and associated errors. We used improved input data (fuels 
and weather) to run the simulations aiming to minimise the 
effect of input data quality in the model’s performance. In 
fact, improvements with simulating fire behaviour have 
arisen mostly from these external factors such as better 
mapping of fuel characteristics and moisture (Sullivan and 
Matthews 2013; Perrakis et al. 2014; Pimont et al. 2016), 
significant enhancements in weather forecasting with the 
operational implementation of mesoscale weather models 
and physically based downscaling techniques that can pre
dict wind speed and direction over complex topography 
(Forthofer et al. 2009; Wagenbrenner et al. 2016), and the 
integration of fire behaviour models into software packages 
(Finney 1998, 2006; Ramírez et al. 2011; Monedero et al. 
2019). Unfortunately, our study was not able to dis
aggregate errors resulting from all of these factors. Also, it 
is worth noting that all the fire simulations were performed 
automatically, exposing a new source of error given that the 
fire analyst can often adjust input data and calibrate the 
simulations in real time to adjust the simulated fire growth 
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Fig. 5. Scatterplot of the observed and predicted ROS and mean bias error (MBE) by fuel type ( Scott and Burgan 2005), 
wind speed, dead fuel moisture content and herbaceous live fuel moisture content for 1853 wildfires that occurred in 
California in the 2019–2021 period. GR: Grass Fuel Types 101–109; GS: Grass–Shrub Fuel Types 121–124; SH: Shrub Fuel 
Types 141–149; TL: Timber–Litter–Understorey Fuel Types 161–189.    
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to the real fire progression (Cardil et al. 2019). For instance, 
it is well known how wind fields may change spatially owing 
to topography and how this effect may dramatically impact 
the fire simulations. This is a forecast error that may be 
easily addressed using observational data such as from 
weather stations near a given fire, and such input correc
tions did not occur with the simulations analysed herein. In 
this sense, Cruz and Alexander (2013) found that the lowest 
errors were associated with prescribed fires where fuel and 
weather inputs would have been measured on site. 
Therefore, the errors shown in this manuscript would 
strongly decrease with the knowledge of advanced users 
and integration of other data sources such as weather station 
data (Rothermel and Rinehart 1983; Stratton 2006;  
Alexander and Cruz 2013; Andrews 2014). 

Overall, the fire spread model had moderate MAE and 
MAPE and low bias for Shrub (SH), Grass (GR) and 
Grass–Shrub (GS) Scott and Burgan (2005) fuel types, simi
larly to other studies (Cruz et al. 2018). Conversely, we 
found the highest MAE, MBE and MAPE in timber fuel 
types (Fig. 4) with a MAPE value of 67% with a preponder
ant ROS underprediction bias, an error type leading to 
potentially negative consequences in operational decision 
making (Cheney and Gould 1995). Previous studies found 
the lowest MAE values in timber and logging slash fuel types 
but also the largest MAPE (76%) values. These metrics were 
derived from the range of observed ROS values in these fuel 
types, which were substantially lower than in grasslands and 
shrublands fuel types (Cruz et al. 2018). However, in our 
study, we found the highest MAE and MBE values in timber 
fuel types because the database contained fires with high 
ROS that were not accurately predicted. This may be related 
to convective fire behaviour leading to local winds in the 
fire front not considered by the weather models or the 
difficulty of predicting active crown fire behaviour with 
the current fire spread models. Nevertheless, the effect of 
forest understorey fuel types on the ROS underprediction 
could probably be associated with the oversensitivity of the 
model to fuel bed depth and compactness (Catchpole et al. 
1993). Thus, new custom fuel families adapted to California 
are needed to improve the accuracy of fire simulations. In 
this sense, we optimised custom timber fuel types for 
California based on genetic algorithms (Ascoli et al. 2015) 
using the data presented in this work, minimising the model 
bias and error substantially (MAPE  37%). The model’s accu
racy was also influenced by other input variables beyond 
fuel types. Low wind speeds and high fuel moisture (dead 
and live) led to ROS underpredictions. This would probably 
be related to limitations of current wind field models to 
capture local patterns such as diurnal winds, abrupt land
scapes driving turbulence, changes in wind direction or even 
pyroconvection that could increase the wind speed on the 
surface and prediction of crown fire behaviour in timber fuel 
types. Although attempts to reformulate and improve the 
Rothermel model have occurred in the past (Catchpole et al. 

1993; Sandberg et al. 2007), the reality is that the model has 
yet to be replaced despite past recommendations for enhan
cing predictive fire models (Andrews 2014). 

Our work supports the need for improvements proposed 
by Andrews (2014) and suggests that new enhancements 
(custom fuel families, improved input data including high- 
resolution wind fields, operational coupled fire–atmosphere 
models to capture pyroconvection, etc.) are still needed to 
decrease the error and bias of fire spread models, especially 
in timber areas. However, this research work provides prom
ising results on the use of wildfire modelling for assessing 
fire spread potential during the initial attack in operational 
environments. In this sense, fire agencies can improve their 
preparedness and response in real time by systematically 
simulating all fire alerts and calculating fire risk metrics 
across the landscape. This procedure supports readiness 
and dispatching levels and drives the prioritisation of pre
vention activities. Also, electrical utilities can evaluate the 
fire risk and consequences, mitigate and prevent cata
strophic wildfires. Finally, the fire spread models are also 
used to evaluate the extended attack incidents. Assessment 
of the model’s performance for this use case would require 
further work given that fire analysts can further calibrate 
the models in real time and the complexity of the fire 
environment is exacerbated owing to the aforementioned 
phenomena, such as pyroconvection, that may play a key 
role in explaining fire behaviour. 

Conclusions 

This work concludes that the fire spread model’s perform
ance for California is in line with previous studies developed 
in other regions and the models are accurate enough to be 
used in real-time operations, especially with the use of 
adjustment modes that allow the calibration of predictions 
using field data (Artès et al. 2015; Cardil et al. 2019). Note 
that Cruz and Alexander (2013) highlighted that a ±35% 
error would be a reasonable and conservative standard for 
model performance of fire spread rate for research studies 
and could, understandably, result in wider error intervals in 
operational environments when simulations are performed 
automatically. 

The accuracy of fire behaviour outputs is modulated by 
environmental conditions, especially fuel types and wind 
speed, which may bias ROS predictions. However, we also 
recognise that there are challenges regarding the effect of 
pyroconvection on local wind fields and the estimation of 
ROS in timber areas. The results of this evaluation suggest 
that the accuracy of fire simulations may be improved with 
newer models aiming to address the spread of fires in timber 
areas, crown fire behaviour modelling and the effect of 
pyroconvection in weather conditions and fire behaviour. 
The FG data and the algorithms developed in this research 
to calculate ROS vectors represent a crucial enhancement to 
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better analyse the fire spread model’s performance for cali
bration efforts, developing new fire spread models and cre
ating new fuel families. Our approach addresses issues 
arising from the use of long fire runs, encompassing at 
times variations in fuel types, the estimation of fuel char
acteristics across the landscape, and the averaging of wind 
speed over broad spatial and temporal scales. 

Supplementary material 

Supplementary material is available online. 
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