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ABSTRACT 

Background. Fire dynamics in the Amazon, while not fully understood, are central to designing 
fire management strategies and providing a baseline for projecting the effects of climate change. 
Aims. The study investigates the recent fire probabilities in the northeastern Amazon and 
project future ‘fire niches’ under global warming scenarios, allowing the evaluation of drivers and 
areas of greatest susceptibility. Methods. Using the maximum entropy method, we combined a 
complex set of predictors with fire occurrences detected during 2000–2020. We estimated 
changes in fire patterns in the near (2020–2040) and distant (2080–2100) future, under two 
contrasting scenarios of shared socioeconomic pathways. Key results. Based on current 
conditions, the spatial fire pattern is affected by farming activities and fire is more common in 
savannas than in forests. Over long time scales, changes toward a warmer and drier climate, 
independent of land cover change, are expected to create conditions more conducive to burning. 
Conclusion and implications. Our study helps in understanding the multiple ecological and 
human interactions that result in different fire regimes in the Amazon. Future efforts can improve 
outcomes through more complex models that couple predictions of land use and land cover 
changes, shifts in vegetation resulting from climate change and fires, and fuel dynamics.  

Keywords: Amazon, climate change, disturbance, fire niche, fire risk, fire susceptibility, 
MaxEnt, modelling, remote sensing, wildfires. 

Introduction 

The Amazon is recognised for extensive dense rainforest, where natural fire disturbance 
is rare and has occurred in isolated small patches throughout its evolutionary history, 
owing mainly to climatic conditions and low combustibility (Fearnside 1990; Uhl and 
Kauffman 1990; Pivello 2011). Embedded in this forest matrix are also disjointed areas of 
savanna vegetation (Pires and Prance 1985; Prance 1996; de Carvalho and Mustin 2017), 
with fragments of varying sizes located in the northeastern region. The persistence of 
Amazon savannas is dependent on disturbances to prevent canopy closure, with fire 
playing an important role through complex interactions involving climate, resources and 
species traits (Hoffmann et al. 2012). 

Despite the widespread recognition that changes in natural historic fire regimes can 
greatly affect the sustainability of fire-sensitive and fire-prone ecosystems (Hardesty et al. 
2005; Pausas and Keeley 2009; Pivello 2011), evidence reveals that human-induced 
ignitions and anthropogenic-driven climate changes are already increasing fire activity 
in the Brazilian Amazon (Nobre et al. 1991; Cox et al. 2004; Malhi et al. 2008; Marengo 
et al. 2008; Zhao et al. 2017; Jimenez et al. 2018). Several studies have focused on the 
region along the ‘deforestation arc’ between the eastern and southern edges, supporting 
the synergistic influences of fire and logging, fragmentation and years of severe droughts 
(Uhl and Buschbacher 1985; Nepstad et al. 2004; Aragão et al. 2007, 2008; Morton et al. 
2008; Righi et al. 2009; Lima et al. 2012; Morton et al. 2013; Fanin and van der Werf 
2015; Barbosa et al. 2019; Dong et al. 2021; Libonati et al. 2021). However, for the 
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northeastern Amazon, there is a lack of literature on inte
grative assessments to estimate the spatial susceptibility to 
fire considering climatic, environmental and anthropogenic 
factors simultaneously. 

Regarding the potential effects of global warming on 
changing fire regimes in the Amazon, the majority of the 
published literature suggests that forest flammability will 
intensify in some locations in the near future, especially if 
deforestation rates increase, but also if they decline (Alencar 
et al. 2015; Le Page et al. 2017; Brando et al. 2020). 
Simulated fire regimes indicated an acceleration of fire 
activity across the southeastern Brazilian Amazon in the 
coming decades (Brando et al. 2020). Even regions of the 
eastern interior (near the Amazon River mouth), where 
current fire probabilities are low, have been predicted as 
areas of fire invasion in the near future (2010–2039) under a 
medium–high emission scenario (Krawchuk et al. 2009). By 
the end of the century, the projections show more frequent 
fires, particularly under scenarios with higher degrees of 
warming (temperature increase greater than 3°C), demon
strating an expansion of fire to regions in the north (near the 
equatorial line), south and east (Scholze et al. 2006). On the 
other hand, a minority group of authors has reported the 
existence of a trajectory of decrease in fire activity in the 
tropics (including the Amazon) that would be strengthened 
until the end of the 21st century under a mid–high emission 
scenario (Moritz et al. 2012). Therefore, the direction 
(increase or decrease) and magnitude of projected changes 
in fire activity at a regional scale in the Amazon are still 
topics under debate. 

In this research, multiple environmental and human fac
tors were included in an analysis to predict and investigate 
the spatial distribution of fire probability in the northeastern 
Amazon and to model future ‘fire niches’ under scenarios of 
global warming during the 21st century using climate nor
mals projected by the global climate model CNRM-CM6-1 
(Voldoire et al. 2019). Our objectives were: fill the gaps in 
knowledge about the recent distribution of fire probabilities 
and the most important drivers in the northeastern Amazon; 
examine the differences between the recent fire environ
ment and future scenarios of climate change; and analyse 
whether projected surfaces of suitability for fire occurrence 
will represent future threats to forest and savanna forma
tions. We hypothesise that pessimistic high emission scenar
ios will increase the environmental propensity for the 
occurrence of fire, expanding the current geographic distri
bution of fire in tropical forest areas. 

Material and methods 

Study area 

Our study considers a spatial approach of geopolitical bound
aries (Amapá state) because this is the level of decision 

making for management of the territory. Amapá state is 
limited to the south and north by wide rivers (Amazonas 
and Oyapock rivers), to the east by an estuarine and 
oceanic coastal area (Amazonas estuary and the Atlantic 
Ocean) and to the west by pristine rainforest. The Amapá 
area extends over 142 470 km2, of which approximately 
73% was destined for the maintenance of traditional peo
ple and conservation, including five indigenous territories 
and thirteen protected areas (PA), managed by the 
government (from different jurisdictions) and established 
under different categories (Brazilian legislation, Law 
9985/2000) (Fig. 1). 

Overview, assumptions and sources of 
uncertainty 

First, we predicted fire probability in the recent period 
(hereafter ‘baseline’) aiming to reproduce present-day fire 
distributions. The sample window extended beyond the 
Amapá boundary, encompassing regions of the lower part 
and the mouth (estuary) of the Amazon River, which are 
influenced by flooding and urban centres (e.g. Belém and 
Santarém, located in Pará state), and including French 
Guiana and most of Suriname. Accounting for the validity 
of the baseline model, we projected future models to esti
mate changes in fire probabilities in the next decades 
(2020–2040) and at the end of this century (2080–2100), 
considering two contrasting scenarios of climate warming. 
The future fire models were fitted altering only the climate 
layers, assuming that all other predictor variables would 
remain stable, maintaining conditions similar to those 
found at the current time. This was a deliberate choice, as 
temperature and precipitation variables consistently surface 
as major controls of fire (Krawchuk et al. 2009). However, 
our simplifying assumption is deliberately biased, under
estimating fire propensity, as we do not consider future 
changes in variables related to fuel dynamics, vegetation 
shifts and ignition rates. We emphasise that we do not 
incorporate dynamic vegetation and fuel models into our 
fire models, as it is still not well understood how vegetation 
systems will respond to climate change (McDowell et al. 
2013; Williams and Abatzoglou 2016). 

Fire occurrence data 

Fire occurrences were obtained for the period between 
2000 and 2020 from the Fire Information for Resource 
Management System (FIRMS) dataset gathered from 
Google Earth Engine (GEE), which uses the standard 
MODIS (Moderate Resolution Imaging Spectroradiometer) 
MOD14/MYD14 Fire and Thermal Anomalies product 
(MODIS 2021). These data were filtered to select only the 
MODIS hotspots with median values for confidence levels 
equal to 100% because it would not be desirable to have 
false positives. Using this criterion, we identified a total of 
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2253 fire occurrences, of which 236 were registered in the 
state of Amapá. 

Environmental and human predictors 

Land-use and land cover 
Land use and land cover information (Fig. 1) is a key 

variable that can provide an assessment of landscape fire 
patterns. These data were used as a categorical layer and 
gave rise to continuous layers using the Euclidean distance 
to represent the influences of distinct floristically structured 
vegetation and human activities. 

The vegetation was characterised considering three aspects: 
flammability, assessed through the Normalized Difference 
Vegetation Index (NDVI) to measure the live fuel moisture 
content (Chuvieco 2003); fire probability, linked to the 
amount of fuel (Krawchuk et al. 2009) and represented as 
biomass density; and fuel type, through information on two 
vegetation cover classes (forest and savanna). 

Human influence 
Aiming to assess the human footprint related to ignition 

patterns, we retrieved information on the spatial distribution 
of available road infrastructure (Ministério dos Transportes 
2019), protected areas (Ministério do Meio Ambiente 2020), 
land use types and waterways (Project MapBiomas 2019). 
These factors are frequently associated with human ignitions 
(Flannigan et al. 2009; Bowman et al. 2011; Archibald et al. 
2013; Chuvieco et al. 2014). The data collected gave rise to 
five raster files of human influence sources, in which each 
cell represented a distance value (Euclidean method) from 
the closest road, water, farming activity, urban land use and 
protected areas. 

Elevation and climatic variables 
Bioclimatic variables (historical and future climate) and 

elevation data (Shuttle Radar Topography Mission (SRTM)) 
are available in the WorldClim version 2.1 database 

Study area
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Fig. 1. Land use and land cover in the Amapá state 
in 2019 according to MapBiomas (Collection 5) 
( Souza et al. 2020), also including the vector layers: 
political boundaries, indigenous lands, protected 
areas, highways and main cities. In the legend, each 
protected area is identified by the name of the 
reserve preceded by the abbreviation of the national 
category to which it belongs, including the restricted 
protection units (ecological station, EE; national park, 
PARNA; city park, Mun. Parq.; and biological reserve, 
REBIO) and sustainable use (environmental protec
tion area, APA; national forest, FLONA; state forest, 
FLO Est; extractive reserve, RESEX; and sustainable 
development reserve, RDS).    
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Table 1. List of parameters evaluated for assessing fire propensity in the northeastern Amazon, including a brief description of the data, spatial resolution, type of variable and 
source (all accessed March–April 2021).        

Class Variable (unit) Description of data Resolution Type Source   

Climate normals Tavg (°C) Annual mean temperature 2.5 arc-min Cont  Fick and Hijmans (2017) for the period 1971–2000 and   
Voldoire et al. (2019) for future fire models ΔTdiurnal (°C) Annual mean diurnal range (mean of monthly (max 

temp − min temp)) 
2.5 arc-min Cont 

Isother (%) Isothermality (ΔTdiurnal/ΔTannual × 100) 2.5 arc-min Cont 

Tseason (°C) Temperature seasonality (standard deviation) 2.5 arc-min Cont 

Tmax (°C) Max. temperature of warmest month 2.5 arc-min Cont 

Tmin (°C) Min. temperature of coldest month 2.5 arc-min Cont 

ΔTannual (°C) Annual temperature range 2.5 arc-min Cont 

Twet (°C) Mean temperature of wettest quarter 2.5 arc-min Cont 

Tdry (°C) Mean temperature of driest quarter 2.5 arc-min Cont 

Twarm (°C) Mean temperature of warmest quarter 2.5 arc-min Cont 

Tcold (°C) Mean temperature of coldest quarter 2.5 arc-min Cont 

PPT (mm) Annual precipitation 2.5 arc-min Cont 

PPTwet (mm) Precipitation of wettest month (max([PPTi, …, PPT12])) 2.5 arc-min Cont 

PPTdry (mm) Precipitation of driest month (min([PPTi, …, PPT12])) 2.5 arc-min Cont 

PPTseason (%) Precipitation seasonality (coefficient of variation) 2.5 arc-min Cont 

PPTwet (mm) Precipitation of wettest quarter 2.5 arc-min Cont 

PPTdry (mm) Precipitation of driest quarter 2.5 arc-min Cont 

PPTwar (mm) Precipitation of warmest quarter 2.5 arc-min Cont 

PPTcold (mm) Precipitation of coldest quarter 2.5 arc-min Cont 

Topography Elevation (m) SRTM elevation data 2.5 arc-min Cont  Fick and Hijmans (2017) 

Land use and land cover LULC (class) Landsat-based classification of Pan-Amazonia for 2019 30 m resampling for 
2.5 arc-min 

Cat  Project MapBiomas (2019),  Souza et al. (2020) 

Vegetation NDVI (dimensionless) Annual median NDVI between 2001 and 2020 500 m resampling for 
2.5 arc-min 

Cont  Didan (2015) 

Biomass (Mg/ha) Woody biomass density 500 m resampling for 
2.5 arc-min 

Cont  Baccini et al. (2012) 

Dis_forest (km) Euclidean distance calculated from a binary forest raster 2.5 arc-min Cont  Project MapBiomas (2019) 

Dist_savanna (km) Euclidian distance calculated from a binary savanna raster 2.5 arc-min Cont  Project MapBiomas (2019) 

Anthropogenic factors Dist_road (km) Euclidian distance to paved roads calculated from a 
vector file 

2.5 arc-min Cont  Ministério dos Transportes (2019) 

Dist_water (km) Euclidian distance calculated from a binary water raster 2.5 arc-min Cont  Project MapBiomas (2019) 

Dist_urban (km) Euclidian distance calculated from a binary urban raster 2.5 arc-min Cont  Project MapBiomas (2019) 

Dist_Farming (km) Euclidian distance calculated from a binary farming raster 2.5 arc-min Cont  Project MapBiomas (2019) 

Dist_PA (km) Euclidian distance to protected areas from a vector file 2.5 arc-min Cont  Ministério do Meio Ambiente (2020) 

Type: Continuous, CONT; categorical, CAT.  
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(downloaded from http://worldclim.org). The baseline 
model was based on average climatic data for 1971–2000 
(Fick and Hijmans 2017). The future fire models were based 
on average climatic data projected from CNRM-CM6-1, the 
fully coupled atmosphere–ocean general circulation model 
(GCM) of the sixth generation jointly developed by Centre 
National de Recherches Météorologiques (CNRM) and Cerfacs 
for the sixth phase of the Coupled Model Intercomparison 
Project 6 (CMIP6) (Voldoire et al. 2019). In the present 
work, we considered the CNRM-CM6-1 model because it 
performs reasonably well in humid regions (Parsons 2020;  
Yazdandoost et al. 2021). The future fire models for the 
early (2021–2040) and end of (2071–2100) the 21st century 
were based on two scenarios that combine socioeconomic and 
technological development (shared socioeconomic pathways, 
SSPs) (O’Neill et al. 2013; Gidden et al. 2019), an optimistic 
scenario (SSP 1-2.6, a low emission scenarios, where temper
atures will stabilise at approximately 1.8°C, relative to 
1850–1900, by the end of the century) and a pessimistic 
scenario (SSP 5-8.5, which assumes an increase in warming 
of nearly 4.4°C by 2100 over preindustrial levels and crossing 
a 2°C increase in 2050). 

Variable selection 

First, all layers of environmental and human predictors 
(Table 1) were resampled to the same pixel size as the 
climatic data (2.5 arc min a side or approximately 5 km at 
the equator) using the nearest-neighbour process. Then, we 
analysed the variable set for the baseline model to select the 
most important uncorrelated predictors and lead parsimo
nious and interpretable models (Merow et al. 2013). Two 
procedures were used to reduce multicollinearity between 
variables, as per Mohammadi et al. (2021). We started with 
an implementation of an optimised selection of 29 variables 
(continuous variables), processed in the R program (R Core 
Team 2020), based on the sample size corrected for the high
est area under the curve (AUC) of the receiver operating 
characteristic (ROC) and the lowest Akaike information crite
rion (AIC). Variables were removed by setting a contribution 
threshold of 1%, regularisation multiplier of 1–5 with incre
ments of 0.5 and Pearson’s correlation coefficient >|0.7|. 
Then, to overcome multicollinearity between the selected 
variables, we calculated the variance inflation factor (VIF) 
using the R package usdm (Naimi et al. 2014) and excluded 
variables with VIF >5. 

Overall, seven variables were selected, of which two were 
associated with human factors (‘Distance to roads’ and 
‘Distance to farming’) and one was associated with topogra
phy (‘Elevation’); there were four climatic layers for 
1970–2000 (one for temperature and three for precipita
tion): temperature annual range, annual precipitation, pre
cipitation seasonality and precipitation of the warmest 
quarter. Additionally, we included the categorical variable 
related to land use land cover (LULC) types, resulting in a 

final dataset that converged to a total of eight variables 
considered in the construction of the ‘baseline’ and ‘future’ 
fire probability models. 

MaxEnt modelling of fire occurrences 

We assessed the fire potential in different regions by treating 
fire as an entity analogous to an ecological species and 
applying ecological niche theory, specifically ecological 
niche modelling, via the maximum entropy (MaxEnt) 
method. We chose the MaxEnt method because it is a 
presence-only machine learning algorithm that iteratively 
contrasts multiple predictor values at occurrence locations 
(i.e. ignition points) with those of random locations across 
the study area (Elith et al. 2010), resulting in models that 
are able to describe complex relationships (Parisien et al. 
2012). The conceptual approach and MaxEnt method have 
been recommended for fire studies carried out in different 
parts of the world, with different objectives (Parisien et al. 
2012; Renard et al. 2012; Bar Massada et al. 2013; Arpaci 
et al. 2014; De Angelis et al. 2015; Duane et al. 2015; Davis 
et al. 2017; Li et al. 2017; Adab et al. 2018; Fonseca et al. 
2019; Molina et al. 2019; Xiong et al. 2020; Arenas-Castro 
and Sillero 2021). Here, the analyses were performed using 
the open-source ‘MaxEnt’ software version 3.4.4. (Phillips 
et al. 2020). 

The algorithm was run with default settings (more details 
can be found in Phillips et al. 2006, 2017; Phillips and Dudík 
2008), except that the ‘Maximum iterations’ value was set to 
5000, the number of replications was set to 1000 and the 
‘Random seed’ option was selected. We fitted baseline and 
future climatic models to our data using the subsample 
replicate run type, with 70% of the fire occurrence cells 
used as training data and 30% as test data. Therefore, 
30% of the test data and a set of 10 000 random background 
cells were used to validate the model. 

Model evaluation and variables’ contributions 
Model performances were evaluated with the widely used 

AUC statistic (Fielding and Bell 1997), which measures the 
ability of the model prediction to discriminate fire presence 
from background points. Although AUC has been criticised 
(Lobo et al. 2008), it is the standard method to assess predic
tion accuracy because of its threshold independence (Phillips 
et al. 2006; Franklin and Miller 2009) and the simplicity of 
interpreting its results (Bar Massada et al. 2013). 

The relative importance of the predictor variables in the 
model was tested using two approaches provided by MaxEnt: 
percentage contribution and jack-knife metrics (leave-one- 
out cross-validation). The percentage contribution is deter
mined by a heuristic approach in which values represent the 
cumulative gain (fit) to the model provided by the corre
sponding variable (Phillips 2017). The jack-knife approach 
was used to measure how much unique information each 
variable provides in explaining the fire distribution as each 

www.publish.csiro.au/wf                                                                                                      International Journal of Wildland Fire 

153 

http://worldclim.org
https://www.publish.csiro.au/wf


variable is excluded one at a time when running the model 
with the remaining variables (Baldwin 2009). 

Spatial fire distribution of the baseline model and 
change analysis 

The output probability of fire was given by the comple
mentary log-log transformation (cloglog format), which gives 
an estimated value between 0 and 1, with higher values 
demonstrating more fire-prone conditions. To carry out 
zonal analyses, we classified the pixels of the models into 
five levels of suitability: very low (0.00 < x ≤ 0.10 → 1), low 
(0.10 < x ≤ 0.30 → 2), moderate (0.30 < x ≤ 0.50 → 3), 
high (0.50 < x ≤ 0.75 → 4) and very high (0.75 < x ≤  
1.00 → 5). For the baseline model, we quantified the area 
occupied by each habitat suitability class for fire occurrence 
in relation to its land use and land cover. 

Changes in fire probability in relation to future climate 
shifts were detected through two distinct methods. The first 
recognised the differences between the modelled predictions 
after their conversions into binary maps, applying the 10th 
percentile training presence logistic threshold to define suit
able and unsuitable raster cells. Overlay analysis was con
ducted between the baseline and each predicted future 
model, resulting in four expected change maps, where pro
jected decreases in fire propensity were indicated as retreats 
and increases as invasions. These results allowed us to iden
tify potential ‘hotspots of change’ for different scenarios and 
temporal scales. The second method comprised comparative 
analyses between the models in relation to the coverage by 
different fire classes in different scenarios and a classifica
tion agreement (pixel-by-pixel correspondence) analysis 
computed using the R packages Greenbrown (Forkel and 
Wutzler 2015) and DiffeR (Pontius and Santacruz 2015), 
allowing the generation of shift maps (Supplementary infor
mation). Additionally, concerns about how fire probabilities 
would change in areas currently occupied by forests and 
savannas under different emission scenarios were analysed 
using summary statistics in the form of percentage loss or 
gain in different fire suitability classes. 

Results 

Performance of the modelling approaches 

The AUC average test value for the baseline model devel
oped for fire occurrence was 0.817 ± 0.008 (Fig. 2). The 
AUC values for the 2030s optimistic, 2030s pessimistic, 
2090s optimistic and 2090s pessimistic models obtained 
from the validation phase processing exhibited respective 
values of 0.803, 0.816, 0.817 and 0.803. These results, 
according to the thresholds proposed by Vilar et al. (2016) 
in research on fire modelling, indicate that the predictive 
performance of the MaxEnt models was excellent in terms of 
goodness-of-fit with the training datasets. 

Variable importance 

Regarding the relative contributions of the environmental 
variables, ‘Distance to Farming’, ‘Precipitation Seasonality’ 
and ‘Elevation’ were the strongest predictors of fire distribu
tion, with contributions of 55.4, 16.8 and 10.4%, respectively 
(Supplementary Table S1). The AUC values calculated by 
the jack-knife metrics supported this overview and revealed 
that the individual importance of these three variables was 
high (Fig. 2). 

The response curves of the main factors affecting the 
possibility of fire occurrence highlighted some details regard
ing the patterns of distribution (Supplementary Fig. S1). Fire 
occurrence was negatively related to ‘Distance to Farming’, 
demonstrating that fires are more likely to occur closer to 
agriculture, pasture and silviculture. Water availability, espe
cially precipitation seasonality, emerged as the main climatic 
driver of fire probability. The probability of fire occurrence 
displayed a complex relationship with elevation, with fire 
occurrence exhibiting a peak at approximately 100 m and 
then increasing again from approximately 400 m above sea 
level. This result demonstrates that the occurrence of fire is 
more frequent in the Amazon lowlands and plain regions, 
but our sample window also captured fire occurrences in 
Guyana’s Shield region. 

Baseline model of fire probability 

The baseline model captured a complex spatial pattern of fire 
activity (Fig. 3). In general, areas where fire was not observed 
in the fire dataset had ‘very low’ and ‘low’ predicted fire 
probabilities (probability ≤ 0.3). These classes occupied 
approximately 80.6% (114 925 km²) of the territory of the 
state of Amapá, and the current coverage of these areas is 
represented, almost entirely, by forest vegetation (81.3%) 
(Fig. 4). In relation to areas of high fire probability (≥0.5 
probability), we observed a strong coincidence with the dis
tribution of savanna vegetation and with forests located close 
to areas currently used for agriculture and pasture. 

Spatially, we observed that the region classified as ‘very 
low’ suitability was located in western Amapá state, a rela
tively isolated region with a higher relief, including the 
pristine rainforest ranges of Tumucumaque National Park, 
the largest protected area of tropical forest in the world. The 
model predicted ‘low’ fire probabilities in forests in the most 
central region of the state, in wetlands, floodplain forests 
and mangroves. The class of ‘moderate’ fire suitability was 
found mainly in areas occupied by savannas, savanna–forest 
transition areas and along the highway that connects the 
state of Amapá from north to south (Highway BR156). 

The highest probability classes (8528 km2) were concen
trated in two regions, one in the central eastern part of 
Amapá state and the other located close to the French 
Guiana border. In the most central area, ‘very high’ probabili
ties (≥0.75 probability) were linked mainly to agricultural 
activities, including forestry for the national and international 
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markets. Relative to the region located north of Amapá, 
extensive cattle raising seemed to be a major driver of fire 
occurrence, but influences from subsistence or small-scale 
agriculture practiced by indigenous communities also existed. 

Projected future fire probabilities 

The future fire distributions projected (Supplementary Fig. S2) 
showed that large areas of Amapá state are expected to experi
ence small near-term changes in fire probabilities. Then, in the 
coming decades, the fire propensity classes predicted in the 
present seem to hold for both the optimistic and pessimistic 
scenarios. These results are demonstrated by areas where fire 
propensity remained unchanged in the shift maps (Fig. 5) and 
also by high agreement between the baseline and the 2030s 
models (Supplementary Fig. S3). However, predicted changes 
deviated significantly more from current conditions over time 
and under a higher emission scenario. 

We observed high similarity between the optimistic and 
pessimistic emission scenarios projected for the near future 
(91% agreement). However, it is important to note that under 
a high emission scenario (pessimistic 2030s), some areas in 
northern Amapá state showed projections of decreasing fire 
probability (Fig. 5). This seems to be related to conditions of 
lower seasonal precipitation, because the average annual 
temperature was predicted with values higher than the opti
mistic scenario and there was a forecast reduction in annual 
precipitation (5.5% less than current conditions). 

Toward the end of the 21st century, the model for the 
low emission scenario showed relative similarity to the 
baseline (87% agreement) and high dissimilarity with 
respect to the pessimistic scenario (49.2% agreement). 
The pessimistic model, in turn, showed high dissimilarity 
to the baseline model (53%), mainly due to the increase in 

area occupied by moderate and high suitability classes for 
fire occurrence (Fig. 6). 

Changing disturbance regimes in forest areas and 
savannas 

In the near future, an optimistic low emission scenario would 
result in little change to fire probabilities in areas currently 
occupied by savannas, but some forest areas would become 
more susceptible to fire. In spatial terms, expansion of fires 
in forest areas would occur in the central part of the state in 
both pessimistic and optimistic scenarios (Fig. 5). On the 
other hand, if the pessimistic scenario prevails in the coming 
decades, forest and savanna vegetation located in the north 
of the state of Amapá will be less threatened by fire risk. 

Toward the end of the 21st century, the pessimistic sce
nario for high emissions indicates the expansion of areas of 
greater suitability for fire occurrence in forest or savanna 
areas compared with the baseline. This finding is evidenced 
by the increase in the proportion of moderate and high 
classes and decrease in the proportion of classes with 
lower fire probability for both types of vegetation (Fig. 7). 

Comparing the optimistic and pessimistic scenarios pro
jected for 2090s, we found that the pessimistic scenario 
showed increases in high suitability fire classes of ~9.6% 
for forests and 15.8% for savannas. 

Discussion 

Fire distribution under current conditions 

Our spatial fire distribution modelling emphasised that fire, 
climate conditions and farming are inextricably linked. 
Regarding climate constraints that influence fire distribution, 
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we identified three dominant variables: precipitation season
ality, annual precipitation and annual temperature range. 
These variables are associated with biomass drying and cli
matic seasonality, processes that characterise the occurrence 
of savannas and result in their greater propensity for fire. 
However, a significant proportion of the areas occupied by 
Amazon savannas had low fire probability, which suggests 
that in these areas, flooded soils represent the main restrictive 
factor for the occurrence of ignition, as well as for the growth 
of trees. Flooding processes occur in Amapá (Santos 2016;  
Anthony et al. 2021) due to: the overflow of water in a river 
or lake onto neighbouring lands (fluvial flood); the accumula
tion of rainwater (pluvial flood); and the inundation of land 
along the coast by seawater (coastal flood). 

We also found evidence that human-induced fire events 
are the main driver of ignition in the northeastern Amazon 
region, highlighting a strong relationship between fires and 
agricultural systems, which can be intensified by the pres
ence of roads. This result is similar to that reported by  
Archibald et al. (2013), whose research on global pyrome 

identification resulted in the classification of much of the 
state of Amapá into a region where human activities, par
ticularly deforestation and agriculture, are a major force 
that disrupts the fire system. The use of fire for land man
agement is ‘embedded in the culture and economic logic of 
millions of rural Amazonians’, as this primary technique 
approach facilitates land clearing, improves soil fertilisation 
in slash-and-burn agriculture and favours cattle pasture 
(extensive system), either in implementation or during 
maintenance (Nepstad et al. 2001). 

Our fire model captured the spatial concentrations of very 
highly fire-prone areas, which are related to altered fire 
regimes, mainly in landscapes originally covered by savanna 
vegetation. There are some reasons for crop, livestock and 
forestry activities occurring in preference in savannas rather 
than in forests in the northeastern Amazon: lower economic 
costs, fewer environmental restrictions and greater access 
to road networks. These results reinforce the finding that in 
Amapá, savannas are highly threatened ecosystems that 
have received very little attention, with gaps in scientific 
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knowledge and almost no protection, compared with the 
forested parts of the state (Mustin et al. 2017). 

For savanna areas, the sustainable use of fire for mana
ging cattle ranching and protected areas is recommended, 
but the regimes must be fitted to local specific features 
(Pivello 2011; Borges et al. 2016; Mustin et al. 2017;  
Pivello et al. 2021). In addition, environmental, economic 
and social benefits can be generated if aspects of fire suscep
tibility are considered in the analyses to define zoning regu
lations by legal instruments, ordering the suitable use of the 
land and fire regime prescriptions. Furthermore, considering 

the influence of farming on fire occurrence outbreaks, strat
egies to adjust agricultural practices should be considered, 
such as training farmers to improve the use of fire and 
increase safety measures (Adab et al. 2018). 

Regarding fire ignitions influenced by road networks, we 
observed a greater vulnerability of roadside vegetation, 
especially in areas covered by forest along the BR156 high
way. According to Pivello (2011), roads facilitate logging 
activities, and the extraction of large trees opens the forest 
canopy, decreases the local moisture, and strongly increases 
forest susceptibility to wildfires. For regions near the BR156 
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highway, we suggest fire prevention and mitigation strate
gies, prioritising the allocation of public resources and 
support systems to combat illegal burning. We also note 
the strategies suggested by Pivello (2011), which include 
the development of policies to stimulate fire-free practices 
and small-scale agricultural projects. We recognise the 
importance of creating mechanisms that support and favour 
the continued development of markets and incentives for 
small-scale producers for sustainable development (Mustin 
et al. 2017). 

Fire patterns and climate-related changes 

For the next few decades, our modelled potential fire distri
butions were very similar to those for the present time, 

regardless of the emission scenario analysed. In line with 
these results, Krawchuk et al. (2009), in a previous study on 
global pyrogeography, demonstrated that for a medium– 
high emission scenario, no invasions or fire retreats were 
found for the same region. However, this would only be 
achieved under sustainable land use projections. According 
to Fonseca et al. (2019), when land conversion predictions 
(fragmented landscapes) are coupled with intermediate 
emission scenarios, the changes can be significant, with an 
increase in the probability of fire occurrence in the interme
diate future (2041–2070). 

Regarding changes in fire niches in the late 21st century, 
the patterns of expansion and contraction demonstrate more 
pronouncedly divergent situations when comparing the 
optimistic and pessimistic scenarios (Fig. 5). In this sense, 
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our results confirm our hypothesis, as the large expansion of 
fire-prone areas was projected to occur under a scenario 
of higher emissions independently of land cover change. 
Consequently, continued emissions of greenhouse gases 
would increase biodiversity loss, put the water cycle at 
risk and negatively affect the ecosystem services provided 
to local people. 

These threats may be even greater than projected in this 
study and fire propensity may expand to an even larger area 
than projected here, beause we do not associate predictions 
of land use and land cover changes. Regarding human influ
ence, although the state of Amapá has extensive areas with 
restrictions for land use conversion, it is likely that fast 
changes in land cover around protected areas could lead to 
an increase in the potential for future fires. The increase in 
the occurrence of fires can also lead to conversions in vege
tation types, as observed by Brando et al. (2014) in south
eastern Amazonia, where the synergistic effect between fire 
and recent severe droughts has led to the conversion of forest 
species to flammable grass species near forest edges. 
Therefore, the magnitude of fire disturbances may be ampli
fied by positive feedback loops between fires and increases in 
forest flammability (Cochrane and Schulze 1999; Cochrane 
et al. 1999; Nepstad et al. 2001; Hoffmann 2003; Balch et al. 
2015). Grass–fire cycles, for example, are important for many 
forest frontiers where fires interact positively with exotic 
grass invasion (D’Antonio and Vitousek 1992; Veldman and 
Putz 2011; Silvério et al. 2013), with potentially disastrous 
consequences considering synergies between deforestation 
and climate change (Malhi et al. 2009; Silvestrini et al. 
2011; Le Page et al. 2017; Xu et al. 2020). 

Maintaining or increasing current patterns of fire occur
rences in the northeast region of the Amazon could change 
the role of the world’s largest rainforest in balancing the 
global carbon budget. According to evidence found by Gatti 
et al. (2021), the eastern region of the Amazon can already 
be considered as a source of carbon emissions. Therefore, in 
this study, we provide information that can help decision 
makers to outline fire prevention, management and suppres
sion strategies, minimising the risks of degradation of 
Amazonian ecosystems. 

Limitations 

Our projections are biased in terms of the algorithm selected 
for the modelling itself and the set of future climate data 
obtained from a single GCM. Therefore, without a doubt, 
there are limitations in our results that mainly stem from the 
lack of accuracy or precision in the climate data restricted 
by the predictions of the CNRM-CM6-1. Furthermore, our 
results should be interpreted with caution for the late 21st 
century, because we do not associate predictions of land use 
and land cover changes, shifts in vegetation resulting from 
climate change and fires, and fuel dynamics. Therefore, our 
simulations should be interpreted as a motivation for future 

efforts, which can advance contributions through more 
complex models. 

Conclusion 

In recent years, the synergy between socioeconomic and 
environmental factors has resulted in a greater spatial con
centration of regions with a high probability of fire occur
rence in the northeast Amazon. Farming activities were 
identified as the main driver for the occurrence of ignitions 
and the highest fire activity was observed in Amazonian 
savannas and savanna–forest transition. As savannas are 
fire-dependent, sustainable use of fire is recommended, but 
forest fires are likely to be a cause for concern in the face of 
climate change impacts. For the coming decades, our models 
suggest that wildfire potential is projected to expand into 
some currently pristine and highly humid forests, regardless 
of the emission scenario analysed. Regarding long-term 
scales, the conditions predicted under the high emission 
scenario (SSP 5-8.5) show a significant increase in fire pro
pensity in areas previously unaffected by fire. Consequently, 
this scenario would negatively affect people, biodiversity 
and ecosystems on a local scale, as well as resulting in global 
ecological threats. Conversely, the optimistic emissions sce
nario (SSP 1-2.6) shows the importance of limiting global 
warming to 1.8°C by the end of the century to minimise the 
environmental and social costs associated with wildfires in 
the Amazon. Our predictions of future trends in fire activity 
are inherently uncertain and can be considered conservative, 
because our model does not incorporate feedbacks between 
vegetation and climate, or land use and land cover changes. 
However, our results represent a major contribution to 
addressing regional and global challenges posed to human 
well-being and biodiversity. Therefore, the present research 
can allow stakeholders to identify where propensity for 
future fires might (or not) increase in order to apply efficient 
short and long-term action planning. 

Supplementary material 

Supplementary material is available online. 
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