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Abstract. Wildfires cause substantial environmental and socioeconomic impacts and threaten many Spanish forested
landscapes.We describe howLiDAR-derived canopy fuel characteristics and spatial fire simulation can be integratedwith

stand metrics to derive models describing fire behaviour. We assessed the potential use of very-low-density airborne
LiDAR (light detection and ranging) data to estimate canopy fuel characteristics in south-western Spain Mediterranean
forests. Forest type-specific equations were used to estimate canopy fuel attributes, namely stand height, canopy base
height, fuel load, bulk density and cover. Regressions explained 61–85, 70–85, 38–96 and 75–95% of the variability in

field estimated stand height, canopy fuel load, crown bulk density and canopy base height, respectively. The weakest
relationships were found for mixed forests, where fuel loading variability was highest. Potential fire behaviour for typical
wildfire conditions was predicted with FlamMap using LiDAR-derived canopy fuel characteristics and custom fuel

models. Classification tree analysis was used to identify stand structures in relation to crown fire likelihood and fire
suppression difficulty levels. The results of the research are useful for integrating multi-objective fire management
decisions and effective fire prevention strategies within forest ecosystem management planning.
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Introduction

Fire activity in Mediterranean regions is likely to intensify
owing to climate change, aggravating its impacts on the envi-
ronment and society (Salis et al. 2016). Forest structure affects

fire hazard by influencing surface, ladder and crown fuels and
their involvement in combustion (Cumming 2001; Castro et al.
2003; Fernandes 2009). Thus, ordinary silvicultural manage-
ment and forest planning should consider fire risk to minimise

potential fire damage. Fire risk and wildfire damage can be
reduced by removing or modifying fuels in strategic locations
(Finney 2006; Ager et al. 2012). In this context, crown fire

behaviour considerations are important when planning or
evaluating the effectiveness of fuel treatments (Agee and
Skinner 2005; González-Olabarria et al. 2012; Jiménez et al.

2016; Rodrı́guez y Silva et al. 2017). This has prompted the

application of fire behaviour modelling software for both
research and operational applications, e.g. FARSITE (Finney
1998) or FlamMap (Finney 2006). The assessment of fire

behaviour potential, especially the transition from surface to
crown fires, may benefit from detailed three-dimensional
information about forest structure. However, few studies in
the Mediterranean basin have focused on relevant aspects of

crown fire modelling to aid fuel management practices and fire
suppression strategies.

The high spatial resolution of remote sensing technologies

such as airborne LiDAR (light detection and ranging) and aerial
imagery can improve canopy fuel attributes estimation and
further describe their spatial heterogeneity (Arroyo et al.
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2008; Mutlu et al. 2008; Erdody and Moskal 2010; Garcı́a et al.
2011). Models for crown fire likelihood and behaviour require
canopy fuel characteristics as inputs, namely canopy fuel load

(CFL), canopy bulk density (CBD), canopy base height (CBH),
stand height (SH) and canopy cover (CC). These metrics are
spatially explicit inputs for wildfire behaviour models such as

FlamMap and FARSITE and should be estimated with reason-
ably high accuracy (Ager et al. 2010; Botequim et al. 2017).
Quantitative description of canopy fuels is thus needed to define

silvicultural prescriptions aimed at reducing crown fire suscep-
tibility (Keyes and O’Hara 2002). Crown fires are serious and
dangerous events, as fire suppression efforts are more complex
than in the case of surface fires, owing to higher spread rate,

fireline intensity, smoke production, spotting and turbulence
(Cruz and Alexander 2013). The use of LiDAR-derived forest
variables may thus strengthen fire behaviour modelling (Kelly

et al. 2017).
Several studies using either discrete return or full wave-

form data have demonstrated the LiDAR potential for estimat-

ing canopy fuel metrics (González-Olabarria et al. 2012;
Jakubowksi et al. 2013; González-Ferreiro et al. 2014;
Hermosilla et al. 2014; Hevia et al. 2016). Typically, discrete

systems derive LIDAR metrics related to canopy height and
canopy closure, which subsequently are used as independent
variables in regression models (Andersen et al. 2005; Hall et al.
2005; Erdody and Moskal 2010; Skowronski et al. 2011;

González-Ferreiro et al. 2014). Variables related to canopy
height and closure can be interpreted as a 3D representation of
canopy structure, thus of canopy fuel distribution. Nevertheless,

the higher vertical resolution of full waveform systems as
compared with discrete systems may increase the accuracy of
CBD estimation (Hermosilla et al. 2014; Crespo-Peremarch

et al. 2016, 2018). Countrywide collection of LiDAR data, e.g.
by the PNOA project (Plan Nacional de Ortofotografı́a Aérea;
Ministerio de Fomento 2010), which provides low-density (0.5
first returns m�2) airborne LiDAR data for the whole of Spain,

enables estimation of pixel-based canopy fuel characteristics
(González-Ferreiro et al. 2014, 2017) and is a valuable resource
for fire management (Alcasena et al. 2016).

Most studies that have used LIDAR data to describe canopy
fuels have focused on coniferous forests, which often are
characterised by simple stand structures when compared with

hardwood or mixed stands. Few studies have addressed the
canopy fuel characteristics of mixed forests (Cao et al. 2014;
Latifi et al. 2015; Guerra-Hernández et al. 2016a). Further work

is needed to address Mediterranean forest structures because
only recently, LIDAR studies found advantages of forest-
type strata-specific prediction models over non-stratified ones
(Guerra-Hernández et al. 2016b).

Landscape-scale fuel treatments decrease fire intensity and
fire growth rate, hence resulting in smaller and less severe fires
(Fernandes et al. 2015). Studies linking stand structure and

fire behaviour characteristics to establish a quantitative basis
for forest fuel treatments are scarce outside North America
(Martin et al. 2016; Botequim et al. 2017). Spatially explicit fire

simulators, e.g. FlamMap (Finney 2006), offer a semi-empirical
quantification of fire behaviour and effects and thus a basis to
design fuel treatments (Cruz and Alexander 2010; Martin et al.
2016). Yet fire behaviour simulation across time and space

requires dynamic weather information and spatially resolved
estimates of fuel characteristics, which are not easily obtained
(Botequim et al. 2017). This constrains the use of fire simulators

in forest management planning. Indirect approaches are desir-
able such that local stand- or compartment-level fuel treatments
can be prescribed without having to turn to advanced simulation

models (Botequim et al. 2017).
The present study develops amethodology to estimate canopy

fuel characteristics in complex stand structures by using very-

low-density airborne LiDAR data. A public forest case study –
Tudia y sus Faldas, extending over 748.2 ha and classified into
22 stands – is used to support the research. Specifically, we show
how classification tree analysis can be used to detect significant

relationships between stand-level features and fire behaviour
characteristics. The resulting identification of stand conditions
associated with potential crown fire occurrence and difficult fire

suppression circumvents the use of fire simulation in a forest
management planning context.

Material and methods

Study area and data

The studywas conducted in the Tudia y sus Faldas forest located
in the region of Extremadura, SW Spain. This public forest
(MUP1, Monte de Utilidad Pública número 1) extends over
748.2 ha and is representative of SW Spain stone pine (Pinus

pinea L.) forests, including its mix with maritime pine (Pinus
pinaster Ait.) or Pyrenean oak (Quercus pyrenaica Willd.)
(Fig. 1); small areas of pure Pyrenean oak and maritime pine

stands also occur. The forest is managed for pine nut production,
provision of food and shelter for wildlife and wildfire preven-
tion. Additional goals are the preservation of mixed stands and

regeneration of Pyrenean oak to maintain scenic quality, and the
conservation of native flora and fauna.

The climate is Mediterranean with an oceanic influence,
characterised by dry summers with rainfall concentrated in

autumn and winter, and mean annual temperature and precipi-
tation of 15.28C and 909.2 mm respectively. The maximum
temperature (40.58C) is reached in August. Average summer

precipitation for July and August is just 4.3 mm (1970–2010,
AEMET, Agencia Española deMeteorologı́a). Elevation ranges
from 300 to 1100 m above sea level, and the average slope is

25.5%. Between 1980 and 2008, 27.1% of the area burned. As
per Extremadura’s fire prevention policies (Province Law 207/
2005, 30 August), this public forest is assigned a preferential

protection area status given its wildfire risk (Level IV, maxi-
mum risk).

Field data were obtained from the forest inventory carried
out by the Extremadura Forest Service for forest management

purposes. In total, 192 circular sample plots of 11-m radius
(380.13 m2) were measured between July and August 2010. All
trees with diameter at breast height (DBH) .7.5 cm were

measured in each plot. Smaller trees were tallied but did not
contribute to basal area and volume calculations. Tree height,
height of the live crown base (CBH, defined as the lowest

insertion point of live branches in a tree), crown width (in two
directions at right angles to each other) and age were measured
in a subsample of three trees per plot (the northernmost,
southernmost and one dominant tree). The heights and crown
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length of the remaining trees were estimated from locally
adjusted allometric equations. Equations were fitted to estimate
the height and crown length of all trees in the sample plots
(Table 1).

The individual tree measurements were used to estimate the
following canopy fuel variables in each plot: mean height
(Hm, m), SH (m), stand basal area (G, m2 ha�1), stand volume

over bark (V, m3 ha�1), CBH (m), CFL (kg m�2) and CBD
(kg m�3) (Table 2).

Stand height was computed as Lorey’s mean height (defined

as a basal-area-weighted average height), which is the definition
of SH that provides the values closest to the aerodynamic
canopy height in pine forest stands (Nakai et al. 2010) and is

expected to depict the average height of the dominant and
codominant trees in a stand (González-Ferreiro et al. 2014).
Crown base height was estimated for each tree as the difference
between tree height and crown length; then, crown base height

was converted to its stand-level equivalent, CBH. Guerra-
Hernández et al. (2016b) details the procedures used to obtain
the LiDAR and field data. CBDwas calculated by dividing CFL

by canopy depth (Reinhardt andCrookston 2003). The latter was
estimated as the mean crown length of all trees in the plot (Cruz
et al. 2003), where crown length is the difference between tree

height and height to live crown. For P. pinea and Q. pyrenaica,
no published CFL and CBD stand-level equations were found.
CFL was calculated as the biomass of needles and twigs

,0.6 cm for P. pinea using an equation from Molina et al.

(2011) (Table 1). For P. pinaster, we used allometric biomass
equations that estimate needles and ,0.6-cm twigs for an
individual tree (Gómez-Vázquez et al. 2013). ForQ. pyrenaica,
we used the foliar biomass model of Salazar Iglesias et al.

(2010).
The airborne laser scanning (ALS) data were acquired

between July and August 2010 for the PNOA project. The laser

equipment was a Leica ALS50 sensor operated with a pulse
repetition rate of 83 kHz, maximum scan frequency of 32.1 Hz,
maximum scan angle of �508 and average flying height of

2866 m above sea level, which yielded a theoretical density of
0.5 first returns per m2. The equipment operates at a wavelength
of 1064 nm and can register up to four returns per pulse.

Summary statistics of first return density per m2 within plots
were as follows: average¼ 1.76, minimum¼ 1, maximum¼ 41
and standard deviation ¼ 1.62.

LiDARmetrics are structural descriptive statistics calculated

from the normalised laser-derived point cloud. The metrics for
the 192 plots were calculated using the FUSIONLiDARToolkit
(McGaughey 2016). LiDAR metrics were computed for each

circular plot after normalising the data by subtracting the digital
elevation model (DEM). Details of the procedure used to obtain
the LiDAR metrics are in González-Ferreiro et al. (2014).

Height distribution and canopy closure variables were obtained,
and a set of metrics related to the density of returns enclosed in
the vertical space defined by five height intervals was calcu-

lated, after establishing the minimum height threshold (MHT)
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and height break threshold (BHT). A combination of threshold

heights (MHT and HBT) for each canopy fuel variable was
tested to select the bestmodels (Guerra-Hernández et al. 2016b).
LiDAR metrics are summarised and described in Table 3.

Modelling methods

The modelling chain consisted of two steps (Fig. 2):

(1) Establishment of empirical relationships, by forest type,
between metrics derived from LiDAR data and measured
stand variables using the 192 sample plots. Forest type-

specific models were used to estimate canopy fuel complex
characteristics, namely CBH, CFL, CBD, SH and CC.

(2) Integration into FlamMap of LiDAR-derived canopy fuel
characteristics plus topographic and custom fuel model

layers to assess potential fire behaviour. Classification tree
analysis (CART) was then used to identify significant rela-
tionships between stand and fire behaviour characteristics.

First modelling phase

The use of low-density discrete LiDAR data for forest

mapping is limited, namely smaller trees and understorey are

difficult to map reliably (González-Olabarria et al. 2012;

Jakubowksi et al. 2013). These studies found that tree height,
CBH, CC and general fuel types were accurately predicted from
LiDAR data, but specific fuels were difficult to estimate,

especially in dense forest (Jakubowksi et al. 2013). Custom
fuel models (UCO40 (University of Córdoba)) for Andalusia
(Rodrı́guez y Silva andMolina-Martı́nez 2012) were assigned to
each stand to obtain a surface fuel map for the study area

(Table 4). Fuel models allocation was based on expert local
knowledge and visual interpretation of georeferenced digital
photographs (Table 4, Fig. 3).

Maps were constructed using the best forest type-specific
models for LiDAR data and were supported by a regular grid
design covering the entire study site. The cell size (380.13 m2)

was chosen to match the spatial unit to which the models were
fitted (i.e. circular study plots of diameter 22 m). The
FUSION LiDAR Toolkit (McGaughey 2016) was then used

to obtain the values (per cell) of the explanatory variables and
to export these to raster files. The files were then used in a
geographic information system (GIS) to produce SH, CBH,
CBD and CC maps (Fig. 2). LiDAR-derived CC was esti-

mated using the ratio of the number of first pulses returned

Table 2. Summary of the mean and range of the derived canopy fuel variables

Canopy fuel variables Pure Pinus pinea, n¼ 120 Mixed forest, n¼ 39

Min Max. Mean s.d. Min. Max. Mean s.d.

Hm (m), mean height 3.83 13.34 9.00 2.33 2.07 13.30 7.73 1.81

HL (m), Lorey’s mean height 4.00 13.58 9.30 2.65 2.81 14.49 8.47 2.77

CFL (kgm�2), canopy fuel load 0.06 1.43 0.68 0.31 0.01 2.81 0.41 0.47

CBH (m), canopy base height 0.80 5.55 2.45 0.95 0.65 5.57 2.22 1.01

CBD (kgm�3), crown bulk density 0.02 0.24 0.11 0.04 0.001 0.34 0.06 0.07

Pure Quercus pyrenaica, n¼ 19 Pure Pinus pinaster, n¼ 14

Range Range

Min. Max. Mean s.d. Min. Max. Mean s.d.

Hm (m), mean height 5.59 8.84 7.16 1.01 7.03 13.99 9.55 1.61

HL (m), Lorey’s mean height 5.74 8.98 7.19 1.08 8.32 14.59 10.28 1.60

CFL (kgm�2), canopy fuel load 0.00 0.21 0.07 0.06 0.04 1.92 0.88 0.58

CBH (m), canopy base height 0.40 2.60 1.50 0.33 2.50 6.93 3.87 1.11

CBD (kgm�3), crown bulk density 0.001 0.03 0.01 0.01 0.01 0.29 0.15 0.01

Table 1. Non-linear height-diameter and crown length (CL) models

h is total tree height (m), d is diameter at breast height (1.3m above the ground level, mm),Hm is the mean height,G is the stand

basal area, Dg is the quadratic mean diameter and CP is the crown projection. RMSE, root mean square error

Species Equation (CL) RMSE (m)

Pinus pinea (n¼ 361) CL ¼ h

1þ eð�1:2933498þ0:0003431�d�0:0148593�GÞ 1.022

Pinus pinaster (n¼ 68) CL ¼ h

1þ eð�2:0137762�0:0011001�dþ0:1805119�HmÞ 1.52

Quercus pyrenaica (n¼ 103) CL ¼ h

1þ eð�1:177569�0:002406�dþ0:005825�DgÞ 0.74

Species Equation (crown projection, CP) RMSE (m2)

P. pinea (n¼ 361) CP ¼ ð0:691233þ 0:0358838 � dÞ2 1.78
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from the upper layer of the canopy (using a 2-m threshold
height) to all first returns (throughout the canopy to ground
profile) (Smith et al. 2009; Morsdorf et al. 2010; González-
Olabarria et al. 2012). The DEM was obtained based on

(Kraus and Pfeifer 2001) to 1-m horizontal resolution. Slope,
aspect and elevation of the study area were mapped from the
country’s digital terrain model (DTM) based on standard GIS
procedures (Fig. 4).

Table 3. Potential explanatory LiDAR metrics related to height distribution

Variables related to height distribution (m) Description

hmin, hmax, hmean, hmode, hmedian Minimum, maximum, mean, mode, median

hs.d., hCV, hVAR Standard deviation, coefficient of variation, variance

hskw, hkurt, hID Skewness, kurtosis, interquartile distance

hAAD Average absolute deviation

hMADmedian Median of the absolute deviations from the overall median

hMADmode Median of the absolute deviations from the overall mode

hL1, hL2,y, hL4 L-moments

hLskw L-moment of skewness

hLkurt L-moment of kurtosis

h05, h10, h20,y, h90, h95 Percentiles

Variables related to canopy closure (%) Description

CRR ((mean height – min. height)/(max. height – min. height))

PFRAHBT Percentage of first returns above HBT/total all returns

PARAHBT Percentage of all returns above HBT/total all returns

ARAHBT/TFR (All returns above HBT)/(total first returns)� 100

PFRAM Percentage first returns above mean/total all returns

PARAM Percentage all returns above mean/total all returns

PFRAMO Percentage first returns above mode/total all returns

PARAMO Percentage all returns above mode/total all returns

ARAM/TFR (All returns above mean)/(total first returns)� 100

ARAMO/TFR (All returns above mode)/(total first returns)� 100

PARS0�HBT, PARS(HBT-8), PARS8�14, PARS14�20,

PARS20�26

Ratios of the number of all laser hits within the height strata 0–HBT, (HBT–8), 8–14, 14–20 and

20–26m (respectively) to the number of all laser hits for each plot

Field
data

Phase I (preparing input fire behaviour simulator)
Phase II (fire behaviour modelling)

Data
processing
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Fig. 2. Flowchart of the proposed research methodology. CFL, canopy fuel load; CBD, canopy bulk density; CBH, canopy base height; SH, stand

height; LiDAR, light detection and ranging; CC, canopy cover; G, stand basal area; Dg, quadratic mean diameter; N, tree density.
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Second modelling phase

We used a landscape file covering 31 356 pixels (size 22 m)
and estimated fire behaviour characteristics under constant wind
speed and fuel moisture contents using FlamMap5 (Finney

2006). Fuel and stand management planning to reduce fire
hazard should address maximum fire potential. FlamMap esti-
mates maximum fire potential for any given point of a land-

scape, i.e. the characteristics of the forward section of the fire
front when wind and slope directions are aligned.

Mapped LiDAR-derived canopy fuel metrics (Fig. 3) and
topographic layers (Fig. 4) plus Mediterranean custom fuel
models (Rodrı́guez y Silva and Molina-Martı́nez 2012) were

incorporated into FlamMap to assess potential fire behaviour,
namely rate of spread (ROS, m min�1), fireline intensity
(FLI, kW m�1), type of fire (surface, passive crown or active

crown fire), crown fraction burned (CFB) and fire suppression
difficulty across the study area.

Fuel treatments planning should consider critical fire

weather conditions, here defined as the May–October 97th
percentile (Ager et al. 2010; Salis et al. 2013) of the weather
variables distribution from the nearby (,30 km) Fuente de
Cantos weather station (2008–15), specifically an air tempera-

ture of 37.08C and a relative humidity of 8.5%. The correspond-
ing fine fuel moisture content was predicted based on the
nomograms of Cruz and Alexander (2010), which correspond

to a fine (1-h size class) dead fuel moisture content of 4%. For
the remaining simulation inputs, we assumed fuel moisture
contents of 5% (10-h dead fuels) and 7% (100-h dead fuels);

live fuel moisture contents of 75 and 120% respectively for
shrubs and canopy foliage and a 6-m wind speed of 40 km h�1.

Table 4. Fuel models for Andalusia (UCO40) present in the study area

Code Fuel model UCO40

P1 Short grass. Height less than 5 cm

HPM3 Moderate litter load. Shrubs between 0.5 and 1.5m

M2 Short shrubs. Height between 5 and 50 cm

HPM1 Short shrubs. Height between 5 and 50 cm

HPM5 Medium shrubs. Height between 0.5 and 1.5m

M7 Tall shrubs. Height between 1.5 and 3m

2.91–7.04

SH (m) CC (%) Fuel model

7.05–8.69

12.65–21.70

10.38–12.64

8.70–10.37

0.05–1

1–2

4–9

3–4

2–3

0–25
MODELO_UCO_40

HPM1

P1
M7
M2
HPM5
HPM325–50

75–100

50–75

0–0.05
Mixed forest

Type_forest

Forest typeCBD (kg m–3)CBH (m)

Pure Pinus pinea

Pure Pinus pinaster

Pure Quercus pyrenaica

0.05–0.10

0.20–0.36

0.10–0.20

(a) (b) (c)

(d) (e) (f )

Fig. 3. Stand height (a), Canopy fuel characteristics (b,d,e), fuel models (c) and forest types ( f ) maps for the study area.
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Themodelled fire behaviour variables alongwith topographic
layers over the whole landscape were combined in ArcGIS with
standard stand predictors easily measured or predicted through

forest inventories (e.g. tree density, N, trees ha�1), and LiDAR
models (SH, CC, CFL, CBD and CBH) resulting in a training
database with 14 009 unique combinations of variables as

observed at the cell level. The corresponding analysis file was
the basis to model fire behaviour from site conditions.

Statistical analyses

LiDAR canopy fuel characteristics – first phase

Linear models were used to establish forest-specific empiri-
cal relationships between field measurements and LiDAR vari-

ables. The general expression is as follows (Eqn 1):

Y ¼ b0 þ b1X1 þ b2X2 þ . . .þ bnXn þ e ð1Þ

where Y are plot-based estimates of canopy fuel or stand
variables; X1, X2y, Xn are putative explanatory variables

expressing themetrics of heights distributions or canopy closure
measurements; b0, b1,y, bn are the parameters to be estimated
in the fitting process; and e is the additive error term, assumed to

be normally, independent and identically distributed with zero
mean. Stepwise selection was used to select the best variables
for estimating SH, CFL, CBH andCBD, using the leaps package
(Lumley and Miller 2009) of R software (R Core Team 2017)

Collinearity between regressors was avoided by checking the
condition index (CI) and the variance inflation factor (VIF).
Regressions with a CI above 30 or VIF above 10 were dis-

regarded (Belsley et al. 2005). Residuals normality was tested
with the Shapiro–Wilk test (Shapiro et al. 1968). In contrast
to other studies, e.g. González-Olabarria et al. (2012), log-

transformation of the variables was not needed to increase
model fit ormeet the assumptions of the linear regressionmodel.

Comparison of the estimates for the selected models was

based on the adjusted coefficient of determination (adj. R2) and
the relative root mean square error (rRMSE).

adj: R2 ¼ 1�
P

n
i¼1ðyi � ŷiÞ2

P
n
i¼1ðyi � �yiÞ2

 !

ð2Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

n
i¼1ðyi � ŷiÞ2

n

s

ð3Þ

rRMSE ¼ RMSE

�y
� 100 ð4Þ

where yi is the observed value, ŷi is the estimated value, �y is the
mean observed value and n is the number of observations.

Classification tree analysis (CART) – second phase

The relations between input data of fire simulators or stand-
level descriptors and site conditions with fire behaviour were
fitted through Classification and Regression Tree (CART)

analysis to estimate thresholds for dramatic fire behaviour
changes in each unique set of cells. CART analysis divides a
dataset into increasingly homogeneous subgroups and is ideally

suited to model categorical response variables from multiple
variables, particularly when non-parametric or unbalanced data
and non-linearity are present (De’ath and Fabricius 2000).

CART handles autocorrelated data and can disclose complex
interactions among predictor variables and quantify their rela-
tive importance.

The type of fire predicted by FlamMap (crown fire activity

(CFA)) was coded 1, 2 and 3 for surface fire, passive crown fire
and active crown fire respectively. In a first attempt (CART I),
several variables defining site (e.g. slope, elevation) and stand

conditions (e.g. CBH,CBD) and easilymeasurable or predictable
forest inventory variables (e.g. N, G, quadratic mean diameter
(Dg)) were tested with forest types (coded 1, 2, 3 and 4 for

Q. pyrenaica, P. pinaster, mixed forest and P. pinea

respectively). Then, fuel models (FM) were analysed as potential
predictors to derive discrimination rules for specific forest
management activities for end users ranging from experts with

full access to data (CART II) to forest practitioners with little
access to data or lacking expertise (CART III). For the latter, the
FM set was classified as litter-dominated (‘Litter’), i.e. P1 or

HPM3; dominated by short shrubs (‘S_SHRUB’), i.e. M2 or
HPM1; or dominated bymoderately tall shrubs (‘MH_SHRUB’),
i.e. HPM5 or M7. The selection of independent variables was
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Fig. 4. Topographic layers needed for fire behaviour simulation.
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automatic and model overfitting was prevented by basing the

number of splits on a 10-fold cross-validation (Fernandes et al.
2008). All statistical analyses were performed using JMP statis-
tical software (SAS Institute 2012).

Mapping fire suppression difficulty

Fire suppression difficultymapswere based on the FLI (kWm�1)
classes of Alexander and Lanoville (1989), namely low

(,500 kW m�1), moderate (500–2000 kW m�1), high (2000–
4000 kW m�1) and very high to extreme (.4000 kW m�1).

Results

Canopy fuel modelling

Multiregression linear models (MRM) performed best for most
dependent variables, accounting for a high percentage of the total

observed variability for all canopy fuel variables (.60%), except
CBD in pure and mixed stand of Pinus pinea (Table 5).
The regressions explained 61–85, 70–85, 46–96 and 75–95%
of the variability in field-estimated SH, CFL, CBD and

CBH respectively, with rRMSE ranges of 6.8–20.6, 24.9–37.9,
13.4–48.7 and 5.9–23.0%. The estimates of CFL in P. pinea and
P. pinaster stands were more accurate than those obtained for

mixed and Quercus pyrenaica stands with a more complex
vegetation structure. The highest rRMSE value was for CBD
(rRMSE 48.7%) in mixed stands of P. pinea. The scatterplot of

this variable (Fig. 5d) evidences some outliers corresponding to
significant underprediction of the highest observed values.
Although the best rRMSE results were achieved for CBH, the
models clearly overestimated this variable in some plots (Fig. 5c).

Alternatively, CBD was calculated at pixel level (Riaño et al.

2003; Riaño et al. 2004; González-Ferreiro et al. 2014), owing to
the poor performance of its direct estimation from LiDAR data
for mixed and pureP. pinea forest.We derived CBDa at each cell

by dividing CFL by canopy volume. According to the definition
of CBD, we calculated this variable as follows (Eqn 5):

CBDa ¼ CF̂L

SĤ � CB̂H
ð5Þ

whereCF̂L,CB̂H and SĤ are the estimated values of CFL, CBH
and SH, which were previously modelled from LiDAR data
(Table 5).

Scatterplots of field-measured v. LIDAR-based plot-
level values of canopy fuel variables CFL, CBH, SH and CBD
(using the direct estimation methodology for P. pinaster and

Q. pyrenaica) and CBDa (using the indirect estimation meth-
odology for pure and mixed stands) are shown in Fig. 5.

The MRM showed only minor improvement in predictive

ability when including more than one of the height percentile
metrics. However, models based on multiple height bin metrics
or multiple density metrics did improve the predictive ability of
models by forest type. Models utilising height strata metrics

always required more predictor variables than models utilising
density metrics. The most notable improvement was achieved
with models using height strata metrics, where the use of

multiple height bin metrics allowed height bin-based models
of CBH to account for 75–85% of field-estimated CBH vari-
ability for pure stands. Density metrics by strata exhibit strong

spatial correlation, and as such, the inclusion of a large number
of density bins leads to multicollinearity.
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height (CBH); (d) canopy bulk density (CBD).
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Fire behaviour metrics

The simulation of fire behaviour characteristics matched local
and regional experience on recent wildfires in the area. All fire
behaviour characteristics maps were evaluated to identify stand

characteristics and spatial pattern metrics of fire-prone areas
(Fig. 6). The FlamMap simulation maps showed that fire spread
rate (ROS) and FLI can be very high in Tudia y sus Faldas,

reaching maximums of 55 m min�1 and 7256 kW m�1 (Figs 6b
and 6c). Approximately half of the area was prone to crowning
(Fig. 6e), especially untreated areas of mixed stands of P. pinea
and P. pinaster. The other half could be burned by surface fire

(fuelmodelsHPM1,HPM5andHPM3).Mixed stands ofP. pinea
and P. pinaster displayed more than 63% of CFB (Fig. 6f).

Crown fire

CART I selected three variables to predict CFA, stand metrics

CBD andN combinedwith forest type. CART I explained 66.7%
of the existing variation (after eight splits), with areas under the
Receiver Operating Characteristics (ROC) curve of 0.953, 0.973
and 0.952 respectively for surface fire, passive crown fire, and

active crown fire. The fire type associated with P. pinaster (2)
and P. pinea (4) stands with CBD equal to or higher than
0.08 kg m�3 was surface fire (96% of the observations) (Fig. 7).

However, active crown fire was slightly predominant (54.6%)
for the same stand conditions in mixed forests (3) and Q. pyr-

enaica. Passive crown fire (96.5% of the cases) characterised

mixed forest with CBD ,0.08 kg m�3 and $348 trees ha�1.
The CART II analysis for CFA produced a discrimination

based on CBD, CBH, forest type and fuel model (R2 0.86, 10

splits). Areas under the ROC curve were 0.991, 0.993 and 0.989
respectively for surface fire, passive crown fire and active crown
fire. CBD determined the first CFA partition (Fig. 8). Partitions
on the right side of the tree were based on CBD, CBH, FM and

forest type, with increasing crowning activity associated with
lower CBH (,1.9 m) in mixed-forest stands and Q. pyrenaica

with either HPM5 orM7 as fuel models (active crown fire 83%).

Fire activity was rated low when CBH $ 1.9 m or CBD .
0.08 kg m�3, or CBH , 1.9 m combined with fuel models
HMP1, HMP3 or M2, and for both pine species (99%

surface fire).
The CART III analysis achieved an R2 of 0.85 with 10 splits.

Areas under the ROC curve were 0.991, 0.993 and 0.989
respectively for surface fire, passive crown fire and active crown

fire. Active crowning occurred in 99% of the observations, all
corresponding to Litter and S_SHRUB-dominated stands of
maritime and stone pine, coded 2 and 4 respectively. Hence,
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Fig. 6. Fire behaviour characteristics obtained through FlamMap simulation for an extreme scenario: (a) flame length (FL) (m); (b) rate

of spread (ROS) (mmin�1); (c) fireline intensity (FLI) (kWm�1); (d) heat per unit area (HUA) (kJ m�2); (e) crown fire activity (CFA); and

(f) crown fraction burned (CFB) (%).
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FM and CBD were the major determinants of the likelihood of
crowning (Fig. 9). Fire spread actively in the canopy for 83.5%

of MH_SHRUB-dominated understories, mixed forest and
Q. pyrenaica stands,1.9 m with CBD$ 0.08 kg m�3 (Fig. 9).

Fire suppression difficulty

A stand-level fire risk map was provided for forest management
and risk mitigation purposes (Fig. 10). The area associated with
a maximum FLI of 7256 kWm�1 was classified into as extreme

in terms of fire suppression difficulty (Alexander et al. 1989).
Fire simulation outputs for fire suppression difficulty showed
complex patterns that were generally related to the predominant

fuel model and topography in the study area (Fig. 10). The
shrubland fuel model (M7) was associated with the highest fire
suppression difficulty in the south-western and north-eastern
areas. The areas that had burned previously (north-east of the

study area, occupied by young mixed stands of P. pinea and
Q. pyrenaica) andwere replanted after the fire carried heavy fuel
loads that created favourable conditions for high-intensity fire.

Discussion

Contribution to reduce uncertainty in canopy fuel
characteristics

This study highlights the value of LiDAR models for char-

acterising the structural properties of canopy fuel layers and
helping to address wildfire management concerns. LIDAR
provides 3D vegetation models to accurately map fuel proper-

ties, which contributes to more reliable fire behaviour estimates.

Our approach is potentially valuable for decision support, pol-
icymaking and risk mitigation in southern European forests

likely to experience large wildfires.
The CFL model fit results in Pinus pinea pure stands are

similar to those ofGonzález-Olabarria et al. (2012) (adj.R2 0.69,

rRMSE 26.7%), but are slightly worse than those reported by
González-Ferreiro et al. (2014) (adj. R2 0.82, rRMSE 12.4%).
We did not find studies for mixed andQuercus pyrenaica forest,

although the values are slightly better than those provided by
Cao et al. (2014) for estimating foliage biomass using a discrete
LiDAR system in a mixture of coniferous and broad-leaved

species (adj. R2 0.44, rRMSE 44. 6%) and for broad-leaved
forest (adj R2 0.18, rRMSE 36.4%). The results obtained for
Pinus pinaster forest must be treated with caution, given the
very small sample size, although they provide some information

about the variables that potentially explain the biomass compo-
nents. The R2 values obtained were similar to those obtained by
Hevia et al. (2016).

Despite the low-density data of the PNOA project, CBH
models were the most accurately modelled of the analysed
canopy fuel variables. The adj. R2 values (0.75–0.98) confirm

that CBH estimation was similar or better than achieved by
other studies, where R2 ranged from 0.53 to 0.93 (Andersen
et al. 2005; Hall et al. 2005; Erdody and Moskal 2010;

Zhao et al. 2011; González-Olabarria et al. 2012; González-
Ferreiro et al. 2014; Hermosilla et al. 2014). Results confirm
that the discrete-pulse LIDAR system systematically overesti-
mates CBH at plot level (Riaño et al. 2004; Hall et al. 2005). The

reason is related to vegetation characteristics, such as canopy

Crown fire activity

CBD

<348≥348

<0.08

<247 ≥247N

≥0.08

4,21,3 Type of forest

Type of
forest

Type of
forest 1,41,4,23 3
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Fig. 7. CART I. Classification tree for crown fire activity at the cell level for Tudia y sus Faldasmixed-forest stands as a function of forest type

and stand structure (canopy bulk density (CBD), tree density (N)). Numbers at the ends of the terminal nodes are the percentage of observations

per type of fire (SF, surface fire; PCF, passive crown fire; ACF, active crown fire).
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permeability or CC that could limit LiDAR ability to penetrate
the lower parts of the canopy, thus overestimating CBH
(Maltamo et al. 2014).

Our CBD modelling results are slightly better than those of
González-Ferreiro et al. (2014) probably because first return
average density per m2 within plots (1.76) was greater than in

their study area (0.476). Both studies suggest that the quality of
CBDmodels may be affected by LiDAR data density rather than
by plot size. CBD yielded poor results for pure P. pinea stands.
This may be also a consequence of varied structural differences

between the plots within a large dataset. In the case of mixed
forest, the structural complexity and spatial variability of
vegetation within the canopy may be another reason for obtain-

ing less accurate models.
The forest type-specific LiDAR models performed better

than the model developed from all plots (Cao et al. 2014), which

was more obvious on the wall-to-wall mapped area-based
predictions. This is consistent with results of Hermosilla et al.
(2014) and Latifi et al. (2015).

CBD was highest in P. pinaster stands, particularly in the
older stands (Fig. 3). Additionally, CBD and CFL increased in

unthinned mixed stands of P. pinea and P. pinaster. Patterns in
canopy fuel distribution for pure P. pinea stands were mostly
driven by stand structure variables including SH and stand

density where predicted CBD pixel values ranged between 0.1
and 0.2 kg m�3 across stands.

The lowest CBH and lowest canopy fuel variables are located

within mixed stands of young P. pinea and Q. pyrenaica,
including along streams and in some riparian buffers. The
absence of defined structure within these mixed stands hinders
the correct estimation of canopy fuel metrics.

Contribution to reducing uncertainty in fire management

A set of numerical patterns derived from biometric variables

was identified based on the classification tree approach to
facilitate the identification of thresholds for radical change in
fire behaviour and further support hazard-reduction treatments.

The CART approach is straightforward and identified thresh-
olds for sudden changes in fire behaviour, providing quantitative
evidence for implementing the hierarchy of fuel-reduction

treatment principles (Agee and Skinner 2005). Although the
general findings of the study are expected to hold in forests with
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mixed stands elsewhere, model coefficients and variable
thresholds are specific for the ranges and combinations of fuel,

stand and slope conditions found in the study area. This infor-
mation may be used to integrate wildfire considerations into
long-term forest planning, albeit with the inherent limitations of

the fire behaviour models implemented in FlamMap (Cruz and
Alexander 2010, 2013).

Fuel-related metrics such as surface fuel characteristics,
stand density, vertical continuity and tree size are controllable

and can potentially be used as predictors in forest planning
systems (Garcia-Gonzalo et al. 2014; Ferreira et al. 2012, 2014).

Forest type in CART I is a predictor variable that combining

with lower CBD (,0.08 kg m�3) and forest density
(,348 trees ha�1) increases crowning likelihood. Previous
studies in the Mediterranean Basin considered stand density

and height as potential predictors of fire type (Fernandes 2009;
Alvarez et al. 2012; Fernández-Alonso et al. 2013). However,
only 66.7% of the existing variation was accounted for (Fig. 7).

Forest type is consistent in all three CARTmodels.Mixed-forest
stands and Quercus pyrenaica remained crown-fire prone,

maybe because of their status in the south-west of the study
area, especially in the untreated areas of mixed stands of

P. pinea and P. pinaster, which is consistent with studies that
indicate that older pine stands are less prone to crowning
(Fernandes et al. 2015).

The CART analyses differ in their predictive fuel model
variables to address the needs of different end users. Two
compatible models (CART II and III) were developed to predict
the type of fire.We explored the significance of fuel models and

found that this predictor increases the accuracy of the models up
to a maximum of 86% of variation explained (Fig. 8 and Fig. 9).
CART analysis also identified a 0.08-kg �m�3 CBD threshold,

which is within the 0.05–0.10 kgm�3 range for active crown fire
development (Agee 1996). Fuel model HPM5 (0.5–1.5-m
shrubs) and M7 (1.5–3-m shrubs) combined with low CBH

(e.g. 1.5 m) facilitate active crowning.
CBH had the greatest impact on crown fire occurrence as

expected fromFlamMap adopting the VanWagner (1977) model

for crown fire initiation. A CBH of 1.9 m emerged as a relevant
threshold for dramatic changes in the type of fire over the Tudia y
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sus Faldas forested landscape. Stands with these characteristics
should be prioritised for treatment, i.e. reducing surface fuels,
increasing CBH and decreasing canopy density through thinning.

Our results are consistent with the role played by fuel and stand
structure in determining the typeof fire (González-Olabarria et al.
2012; Fernández-Alonso et al. 2013; Gómez-Vázquez et al.

2014; Fernandes et al. 2015; Botequim et al. 2017).
The present study achieved a better understanding of how

context factors such as forest type and forest management
influence fire behaviour and fire suppression strategies. Thus,

in light of the need to preserve mixed-forest stands and
Q. pyrenaica regeneration, stands with the highest fuel hazard
should be considered as priority intervention areas in Tudia y sus

Faldas, specially the untreated mixed stands of P. pinea and
P. pinaster (south-west of the study area) and previously burned
areas characterised by young mixed stands of P. pinea and

Q. pyrenaica (north-east of the study area). This is owing to the
overcrowded, unthinned young stands creating high fuel continu-
ity and heavy fuel accumulation favouring high-intensity fires.

Conclusion

The aim of this study was to provide multiple forest actors with

practical and global discrimination rules to address wildfire
management planning. The methods presented have poten-
tially wider application to explore fuel and fire management

options in Tudia y sus Faldas. We found a strong relationship
between LiDAR-derived metrics and field-based fuel esti-
mates. These results suggest that the freely available low-
density LiDAR data provided by the PNOA project are a

valuable source of information for estimating canopy fuel
variables in Mediterranean forests. The developed models can

be used to periodically describe the canopy fuel stratum,
whenever the PNOA releases new data, thus reducing financial
costs as well as computation, storage and handling efforts.

LiDAR data from the PNOA project and the proposed models
will be available to all stakeholders and the research commu-
nity, thus facilitating mapping efforts and enabling a more

realistic and accurate description of fire behaviour potential.
Future work should enable more detailed fuel models mapping
from LiDAR at the scale of the Extremadura region to obtain

high-resolution maps for different fuel classification systems
based on fuel complex structure from LiDAR-derived metrics
in combination with vegetation composition retrieved from
LiDAR data and moderate–high-resolution satellite imagery

(Sentinel 2A or Worlview-4) and using field data from the
Fourth Spanish National Forest Inventory (IFN4).

The second component of this study is the first attempt to

develop crown fire behaviour classification rules and tomap fire
suppression difficulty for a mosaic of Mediterranean forest
stands. We attempted to minimise errors with the application

of FlamMap by using regional custom fuel models to represent
surface fuel beds for the study area. The current research allows
crown fire potential to be assessed throughout stand develop-

ment based solely on forest type or fairly simple inventory data.
This allows targeting high-hazard stands for silvicultural inter-
ventions and designing appropriate density management alter-
natives. The CART rules presented allow the development of

site-specific prescriptions to treat surface and crown fuels, either
emphasising tree survival or fire control, or achieving a com-
promise between these two objectives. Additionally, maps that

combine potential fire behaviour provide the information
needed to plan fuel treatments and well-structured firefighting
operations, by taking into consideration the existing distinct

levels of fire hazard.
Our set of classification rules is useful as (i) it precludes the

need to use spatially explicit fire simulation tools, i.e. fire
behaviour is assessed solely from fuel and forest structure data;

(ii) it helps define effective hazard-reduction silvicultural
practices; and (iii) it contributes to developing management
guidelines for fuel and stand structure modification in these

fire-prone forest stands.
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(2017) Modelling the vertical distribution of canopy fuel load using

national forest inventory and low-density airbone laser scanning data.

PLoS One 12, e0176114. doi:10.1371/JOURNAL.PONE.0176114
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Hernando C, Vélez R, Vega JA (2017) Assessment of crown

fire initiation and spread models in Mediterranean conifer forests

by using data from field and laboratory experiments. Forest Systems

26, e02S. doi:10.5424/FS/2017262-10652

Salazar Iglesias S, Sanchez LE, Galindo P, Santa Regina I (2010) Above-

ground tree biomass equations and nutrient pools for a paraclimax

chestnut stand and for a climax oak stand in the Sierra de Francia

Mountains, Salamanca, Spain. Scientific Research and Essays 5, 1294–

1301.

SalisM, AgerAA, Arca B, FinneyMA, BacciuV, Duce P, SpanoD (2013)

Assessing exposure of human and ecological values to wildfire in

Sardinia, Italy. International Journal of Wildland Fire 22, 549–565.

doi:10.1071/WF11060

Salis M, Laconi M, Ager AA, Alcasena FJ, Arca B, Lozano O, de Oliveira

AF, Spano D (2016) Evaluating alternative fuel treatment strategies to

reduce wildfire losses in a Mediterranean area. Forest Ecology and

Management 368, 207–221. doi:10.1016/J.FORECO.2016.03.009

SAS Institute (2012) ‘JMP 10 Modeling and Multivariate Methods.’ (SAS

Institute: Cary, NC, USA)

838 Int. J. Wildland Fire B. Botequim et al.

http://dx.doi.org/10.1071/WF13054
http://dx.doi.org/10.1371/JOURNAL.PONE.0176114
http://dx.doi.org/10.1016/J.FORECO.2012.06.056
http://dx.doi.org/10.5721/EUJRS20164911
http://dx.doi.org/10.5721/EUJRS20164911
http://dx.doi.org/10.4995/RAET.2016.3980
http://dx.doi.org/10.1016/J.FORECO.2004.12.001
http://dx.doi.org/10.1071/WF13086
http://dx.doi.org/10.4995/RAET.2016.3979
http://dx.doi.org/10.1007/S10342-016-0963-X
http://dx.doi.org/10.1007/S10342-016-0963-X
http://dx.doi.org/10.3390/RS10010010
http://dx.doi.org/10.1016/J.JAG.2015.01.016
http://CRANR-projectorg/package=leaps
http://dx.doi.org/10.5424/FS/2016252-09293
http://dx.doi.org/10.5424/FS/2011202-10923
http://dx.doi.org/10.1016/J.RSE.2010.01.023
http://dx.doi.org/10.1016/J.RSE.2007.05.005
http://dx.doi.org/10.1016/J.RSE.2007.05.005
http://dx.doi.org/10.1016/J.AGRFORMET.2010.05.005
http://dx.doi.org/10.1016/S0034-4257(03)00098-1
http://dx.doi.org/10.1016/J.RSE.2003.12.014
http://dx.doi.org/10.1007/S10342-011-0532-2
http://dx.doi.org/10.1007/S10342-011-0532-2
http://dx.doi.org/10.5424/FS/2017262-10652
http://dx.doi.org/10.1071/WF11060
http://dx.doi.org/10.1016/J.FORECO.2016.03.009


Shapiro SS, Wilk MB, Chen HJ (1968) A comparative study of various

tests for normality. Journal of the American Statistical Association 63,

1343–1372. doi:10.1080/01621459.1968.10480932

Skowronski NS, Clark KL, DuveneckM, Hom J (2011) Three-dimensional

canopy fuel loading predicted using upward- and downward-sensing

LiDAR systems. Remote Sensing of Environment 115, 703–714. doi:10.

1016/J.RSE.2010.10.012

Smith AM, FalkowskiMJ, Hudak AT, Evans JS, Robinson AP, Steele CM

(2009)A cross-comparison of field, spectral, and lidar estimates of forest

canopy cover. Canadian Journal of Remote Sensing 35, 447–459.

doi:10.5589/M09-038

Van Wagner CE (1977) Conditions for the start and spread of crown fire.

Canadian Journal of Forest Research 7, 23–34.

ZhaoK, Popescu S, MengX, PangY, AgcaM (2011) Characterizing forest

canopy structure with LiDAR composite metrics and machine learning.

Remote Sensing of Environment 115, 1978–1996. doi:10.1016/J.RSE.

2011.04.001

www.publish.csiro.au/journals/ijwf

LiDAR-based fire behaviour modelling Int. J. Wildland Fire 839

http://dx.doi.org/10.1080/01621459.1968.10480932
http://dx.doi.org/10.1016/J.RSE.2010.10.012
http://dx.doi.org/10.1016/J.RSE.2010.10.012
http://dx.doi.org/10.5589/M09-038
http://dx.doi.org/10.1016/J.RSE.2011.04.001
http://dx.doi.org/10.1016/J.RSE.2011.04.001

