Supplementary Material

Calculating fire danger of cured grasslands in temperate climates – the elements of the Grassland Fire Index (GLFI)

K.-P. Wittich^A, C. Böttcher^{A,*}, P. Stammer^A and M. Herbst^A

^ADeutscher Wetterdienst (German Meteorological Service), Centre for Agrometeorological Research, Bundesallee 33, D-38116 Braunschweig, Germany

*Correspondence to: Email: <u>christopher.boettcher@dwd.de</u>

1 Flow chart of key hydrological processes

7 probability curve reveals a reverse *s*-shaped dependency described by the logistic distribution

8 function

$$p_{ig} = \frac{1}{1 + \exp(a + bF)} \tag{S1}$$

11 with $0 \le p_{ig} \le 1$. The empirical parameters *a*, *b* can be estimated using binary logistic regression

12 analysis (included in the SYSTAT software package, Version 13, 2009). For this, 129 ignition

experiments were performed in still air in the laboratory. Grass samples were used which were
affected by previous outdoor (dry, dew, rain) conditions for at least 12 hours. Prior to the start of
each ignition experiment, the fuel sample was divided into two parts, one was used for the burning
experiment, and the other was taken to gravimetrically measure its moisture content by oven-drying
according to Eq. 1.

18

19 A small gas cartridge (length: 8 cm) enclosed in a vertically oriented shield casing (height: 15 cm) was 20 used as an ignition device (Fig. S1). Approximately 9 cm above the nozzle of the gas cartridge, a 21 horizontal wire rack (dimension: 14.5 cm \times 16.5 cm) was installed which carried a sample of loosely layered dead grass leaves (layer ~2 cm heigh, dry weight: 5-6 gr, m_d : 0.20-0.25 kg m⁻²). The porous 22 23 fuel bed was piled in the centre of the wire rack and did not cover its base area evenly. Just below 24 the wire mesh, a movable horizontal plate protected the litter sample from immediate heating when 25 the gas flame was ignited. At time $t = t_0$ the protection plate was cast aside to expose the sample to a 26 heat of approx. 400°C, as measured with a platinum resistance thermometer at the tip of the gas jet 27 at plate level. The time between $t = t_0$ and the start of ignition, t_{ia} , was measured with a stopwatch. 28 The maximum time of continuous heating by the pilot flame was limited to 30 s, which corresponds 29 to the ignition-delay time of 20 to 40 s found by von Deichmann (1958) for dead grass. As soon as the 30 fuel sample flamed up within the 30 s period, heating by the pilot flame was stopped and the 31 combustion process could proceed without further external influence. Following Parrott and Donald 32 (1970), the ignition results were classified into three categories: a) sustained burning, i.e. all fuel was 33 consumed by the fire, b) temporary burning, i.e. burning occurred but was not sustained, and c) nil, 34 i.e. no ignition occurred within the 30 s period of heating.

35

36 Results

37 In order to estimate the probability of ignition, we consider fuel samples with moisture contents of 38 up to F = 100%. Medians of fuel moisture amounted to 18.2% (n = 64) when the fuel was burnt

completely (no matter when ignition started within the 30 s period and how long the combustion process lasted), 36.05% (n = 38) when the fire went out by itself and left unburnt grass materials behind, and 41.5% (n = 27) when there were no flames within the 30 s period of heating. **Fig. S2** includes the fuel-moisture dependent sigmoid ignition-probability curve (**Eq. S1**) which is based on data split into the binary numbers $p_{ig} = 0\%$ for "ignition failure" and $p_{ig} = 100\%$ for "ignition success with sustained burning", resulting in a = -3.94077, b = 0.10417 (if F in %), and $F_{50} = F(p_{ig}=0.5) = -a/b =$ 37.8% the 50%-probability of success for sustained ignition.

46

47 Ignition probability decreases with increasing moisture content (dashed curve). A likelihood of at least p_{iq} = 96.5% to reach successful ignition and complete combustion can be expected for fuel 48 49 moistures of less than F = 6%. In this dry range our small-scale trials in still air did not result in a 50 definite ignition success, in contrast to some comparative studies. We speculate that the porous and 51 non-homogeneous fuel bed (with unevenly distributed moisture content) and the extremely narrow 52 gas jet, which only heated less than 50 mm² of the fuel-bed base area, might be responsible for the p_{iq} < 100% probability in the moisture range below 6%. Up to $F = F_{50} = 37.8\%$, which is near the 53 54 median of marginal burning (36.05%), 50% of all trials showed complete combustion, while at $F \ge$ 55 69.6% less than 3.5% of the trials were successful, according to the statistics.

56

The F_{50} parameter is almost identical to 38.0% found by Dimitrakopoulos *et al.* (2010) in annual herbaceous Slender Oat grass species, and near 35.4% identified by de Groot *et al.* (2005) in tropical grasslands. The three experiments span a narrow F_{50} range although grass species and experimental setups (agents: gas flame, drip torch, matches) are different.

61

As a reference for our results, the model of Wilson (1985) for good and poor burning conditions of

63 cured short grass (cheat grass, fescue) is taken. In **Fig. S2**, the left edge of the shaded area, p_s ,

represents the probability of sustained burning, and the right edge, p_o , is the probability of fires that

- burn marginally and tend to go out. Our laboratory p_{ig} -profile (dashed line according to **Eq. S1**) is
- 66 within Wilson's transition zone between rigorous and poor burning conditions.
- 67
- 68

69

- 71 Fig. S1. Test device used in the laboratory ignition experiments. The photo shows the time after
- 72 successful ignition of a grass sample lying on the wire mesh. Inflammation by the gas cartridge
- 73 mounted in the vertical shield casing had already stopped as soon as combustion of the fuel bed
- 74 started.
- 75
- 76

Fig. S2. Laboratory-based ignition probability (dashed curve) using the "sustained burning" and 79 80 "ignition not successful" records (data points). Additionally, the marginal burning zone for cured grass is plotted according to Wilson's (1985) model for a fuel load of 0.2 kg m⁻² (for further fuel-bed 81 82 descriptors see Wilson 1985, his Fig. 8). The parameters p_s and p_0 on the left and right side of the 83 grey-shaded transition area indicate probabilities of fires that burn steadily (left) and fires at the extinction limit (right), respectively. 84 85 86 References 87 88 de Groot WJ, Wardati, Wang Y (2005) Calibrating the Fine Fuel Moisture Code for grass ignition potential in Sumatra, Indonesia, International Journal of Wildland Fire 14, 161-168. 89 90 91 Dimitrakopoulos AP, Mitsopoulos ID, Gatoulas K (2010) Assessing ignition probability and moisture of 92 extinction in a Mediterranean grass fuel. International Journal of Wildland Fire 19, 29-34. 93

94	Parrott RT, Donald CM (1970) Growth and ignitability of annual pastures in a Mediterranean
95	environment. 2. Ignitability of swards of various annual species. Australian Journal of Experimental
96	Agriculture and Animal Husbandry 10 , 76-83.
97	
98	Schroeder MJ (1969) Ignition probability. USDA Forest Service, Rocky Mountain Forest and Range
99	Experiment Station, Office Report 2106-1.
100	
101	von Deichmann V (1958) Untersuchungen über die Entzündlichkeit und Brennbarkeit von
102	Bodendecken als Beitrag zu den Grundlagen einer Waldbrandprognose. Dissertation, Forstliche
103	Fakultät, Georg-August-Universität Göttingen, Germany [in German].
104	
105	Wilson RA Jr (1985) Observations of extinction and marginal burning states in free burning porous
106	fuel beds. Combustion Science and Technology 44, 179-193.