
Linking decomposition rates of soil organic amendments
to their chemical composition

J. A. Baldock A, C. CreamerA,B, S. SzarvasA, J. McGowanA, T. CarterA, andM. Farrell A,C

ACSIRO Agriculture and Food, Locked Bag 2, Glen Osmond, SA 5064, Australia.
BUS Geological Survey, 345 Middlefield Road, Menlo Park, CA 94026, USA.
CCorresponding author. Email: mark.farrell@csiro.au

Abstract. The stock of organic carbon contained within a soil represents the balance between inputs and losses. Inputs
are defined by the ability of vegetation to capture and retain carbon dioxide, effects that management practices have on
the proportion of captured carbon that is added to soil and the application organic amendments. The proportion of
organic amendment carbon retained is defined by its rate of mineralisation. In this study, the rate of carbon
mineralisation from 85 different potential soil organic amendments (composts, manures, plant residues and
biosolids) was quantified under controlled environmental conditions over a 547 day incubation period. The
composition of each organic amendment was quantified using nuclear magnetic resonance and mid- and near-
infrared spectroscopies. Cumulative mineralisation of organic carbon from the amendments was fitted to a two-
pool exponential model. Multivariate chemometric algorithms were derived to allow the size of the fast and slow
cycling pools of carbon to be predicted from the acquired spectroscopic data. However, the fast and slow
decomposition rate constants could not be predicted suggesting that prediction of the residence time of organic
amendment carbon in soil would likely require additional information related to soil type, environmental conditions,
and management practices in use at the site of application.
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Introduction

The amount of organic carbon (OC) contained within mineral
soils is considered an important attribute with regards to
both fertility and potential for carbon (C) sequestration.
Measurements of soil OC content, stock or composition
have been included as indicators of soil quality or soil
health (e.g. Reeves 1997; Shukla et al. 2006; Manlay et al.
2007; Hoyle et al. 2011; de Freitas Maia et al. 2013). In
addition to providing a positive contribution to a range of soil
properties important to defining productivity and resilience,
fluctuations in the content or stock of OC in soil also influence
the magnitude of greenhouse gas emissions associated with
agricultural practices. Changes to the stocks of OC found in
soil will directly impact atmospheric concentrations of CO2

(Baldock et al. 2012) and indirectly impact net emissions
of nitrous oxide (N2O) by altering the balance of nitrogen
(N) mineralisation and immobilisation and thus rates of
nitrification and denitrification (Dalal et al. 2003; Hénault
et al. 2012; Macdonald et al. 2016; Guenet et al. 2021).

The stock of OC in mineral soils results from the balance
between the rates of OC input to and loss from soil. The
magnitude of annual changes in soil organic carbon (SOC),
expressed as a function changes in soil C stocks (DSOC) can be
represented using a mass balance approach according to Eqn 1

in which CA is the rate of OC addition to soil and CL, CE and
CM represent the respective rates of OC loss due to leaching,
erosion and mineralisation with all values given in units of
Mg C ha–1 year–1 (Baldock 2007).

DSOC ¼ CA � CL � CE � CM ð1Þ
Rates of addition of OC to soils in native ecosystems are

defined by the net primary productivity (NPP) of the
vegetation present and the proportion of that NPP that is
added to soil. In most agricultural systems, NPP exerts
primary control over inputs of OC. However, this can be
modified substantially by management practices that affect
root/shoot ratio, harvest index, retention and extent of
incorporation of plant residues into soil and the application
of organic amendments (OAs) (Paustian et al. 1997),
particularly OAs derived from off-site waste streams (e.g.
animal manures, biosolids, organic materials such as
composts associated with recycling schemes). In addition to
altering SOC stock, applying waste organic materials to soil
may avoid, or at least reduce, potential emissions of methane
associated with stockpiling or sending organic wastes to
landfills.

Once added to a soil, subsequent increases in SOC stock
can result directly from the retention of OA derived OC, or
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indirectly though potential positive impacts on NPP. The
retention of OA carbon (OAC) will be influenced by its
subsequent rate of mineralisation and it is likely that any
increases in SOC stocks will not be maintained without
continued periodic additions of the amendment. Johnston
et al. (2009) presented data derived from the Hoosfield
Continuous Barley experiment showing that when annual
farmyard manure applications of 35 Mg manure ha–1 year–1

for 19 years were suspended, the previous increase in SOC
stock was lost over time and the SOC stocks approached but
did not return completely to those present in the soil that had
received no manure. Where manure application was
maintained, a further increase in SOC stock towards a new
equilibrium value occurred that was maintained.

The decomposition of SOC and OAC applied to soil
typically follows a first-order exponential decay pattern
(Paul and Clark 1996). Frequently, such decomposition
patterns have two or more discrete phases which are
reflective of a succession of soil processes including the
direct mineralisation of OC from plant residues and any
added OAC, and subsequent turnover of microbial products
synthesised during the decomposition of these materials
(Kalbitz et al. 2003; Adair et al. 2008; Glanville et al.
2016). A range of amendment, soil and environmental
properties and processes will interact to define the rate,
extent and partitioning of OAC mineralisation, including:
(1) the inherent recalcitrance of the OA due to its
biochemical composition, (2) the capability of organisms
within the soil and amendment to degrade and use OAC,
(3) the presence or absence of mechanisms of physical
protection offered by soil minerals (adsorption onto mineral
surfaces and burial within aggregations of mineral particles),
and (4) fluctuations in environmental conditions (e.g.
temperature and availability of oxygen, water and nutrients)
(Baldock 2007).

Where OAs are added to soil to enhance SOC stocks
through the retention of OAC, OAs that offer the greatest
resistance to biological attack and therefore the lowest loss of
OAC via respiration are desired. OAs have a wide range of
chemical and biophysical characteristics that can influence the
mineralisation and retention of OAC in soil (Thuriès et al.
2002). The susceptibility of OAs to decomposition, often
referred to as the of maturity of the amendment in the
context of composts, has been characterised by a range of
approaches that quantify CO2-C emission either directly or via
colourimetric approaches (e.g. the Solvita test; Rynk 2003).
Other simple indices used to quantify the susceptibility to
decomposition of natural organic materials include C/N ratio
(e.g. Taylor et al. 1989) and lignin/N ratio (e.g. Melillo et al.
1982; Walela et al. 2014); however, consistent trends are not
always observed (e.g. Bonanomi et al. 2013) potentially due to
the progressive changes that occur in the biochemical
composition of organic materials during decomposition.
Such changes result from a selective utilisation of the
more biologically labile components and a concomitant
concentration of the more biologically recalcitrant
components (Baldock et al. 1997, Bonanomi et al. 2013,
Incerti et al. 2017). By assessing the relationship
between OA biochemical composition and the susceptibility

of OAC to mineralisation, OAs that are most efficient at
directly increasing and maintaining SOC stocks can be
identified.

In this study, the rate of OAC mineralisation to CO2 from a
range of potential OAs was quantified and fitted to a two-
pool exponential decay function to characterise their relative
stabilities to biological decomposition. The composition of the
organic amendments was characterised using solid-state
nuclear magnetic resonance (NMR), mid-infrared (MIR)
and near-infrared (NIR) spectroscopies. NMR was used to
provide a robust assessment of the chemical composition of
OAC and how that composition alters the susceptibility of the
OACs to mineralisation. The traditional approach of dividing
NMR spectra into chemical shift regions has been extended
through the application of chemometric approaches to the
entire NMR spectral range. MIR and NIR spectroscopies
were included to assess the potential of developing a rapid
and reliable spectroscopic method for defining the
susceptibility of the OAs to decomposition and thus, their
usefulness as a soil amendment designed to increase and
maintain SOC stocks.

Materials and methods

Organic amendments
A total of 85 different potential OAs for soil including:
50 composts sourced from a range of composting facilities
located around Australia, six manures derived from different
animal species, 10 fresh plant residues derived from the major
Australian crop species and some alternative species, and
19 biosolids obtained from a range of urban and rural
wastewater plants. This variety of material was selected to
provide a range of compositions and extents of decomposition
indicative of organic materials that could potentially be added
as amendments to soil. After collection, all materials were air-
dried to constant mass at 408C, finely ground (<50 mm) and
mixed. Total C and total N contents of the air-dried and finely
ground OAs were determined using a LECO TruMac (LECO
Corporation, St Joseph, MI, USA) automated dry combustion
analyser. Inorganic C contents were determined using method
19B of Rayment and Lyons (2011). Organic C contents were
calculated as the difference between total C and inorganic C
contents.

Incubation conditions
A mass of each amendment equivalent to 0.4 g of OC was
added to 22.7 g of a sand/soil/water mixture. The sand/soil/
water mixture was prepared by mixing 2.7 kg of acid-washed
sand (Cyclone dust, Sloans Sands, Dry Creek, SA) with 300 g
of a soil inoculum and 400 g Milli-Q water on an aerated rotary
mixer for two weeks. During the two-week mixing period, the
weight of the sand/soil/water system was maintained by adding
a required amount of Milli-Q water every 2–3 days. The soil
inoculum was prepared by mixing 5 g of air-dry soil from the
0–10 cm layer of 200 different non-calcareous Australian
agricultural soils collected as part of a national soil carbon
research program (Baldock et al. 2013b) in order to capture
diversity in soil microbiota from across Australia’s agricultural
soils. To prepare samples for incubation, the required masses
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of the sand/soil/water mixture and an OA were placed into a
PVC holder (50 mm high and 43 mm internal diameter)
equipped with a 50 mm mesh base. Four control samples
without an OA added were also prepared in an identical
manner and incubated alongside the OA-treated mixtures.
The mixture was homogenised by mixing with a spatula
and the surface was levelled. The prepared cores were
immediately placed into sealed 226 cm3 glass bottles
containing a plastic vial with 10 mL of water and then
incubated for 547 days. The water content of the incubated
samples corresponded to 60% of the total water holding
capacity measured after allowing saturated sand/soil to
drain completely. This water content was controlled by
regular weighing and addition of water as required to
maintain the initial sample mass. No additional nutrients
were added to the incubation system beyond those present
in the OAs as they were collected.

We quantified of CO2 evolution from the samples
periodically over 547 days (0, 4, 6, 11, 19, 26, 34, 48, 64,
103, 153, 204, 243, 306, 376, 432, 498 and 547 days). At the
start of each incubation period (e.g. days 4–11) the headspace
in the bottles containing incubating samples was refreshed
by opening the bottles and allowing them to equilibrate
with the atmosphere of the incubation room. The bottles
were then closed, and a 2 mL sample of the headspace was
immediately extracted and analysed by infrared gas analyser
(Li-Cor Li-820, LI-COR Biosciences, Lincoln, NE, USA) and
a circulation pump (Sanderman et al. 2017). The samples were
then left to incubate in their closed bottles for the specified
period after which time a second 2 mL sample of the headspace
was extracted and analysed. The bottles were then opened to
allow equilibration with the room atmosphere and the cycle
was repeated for the next incubation period. Values from the
start of each incubation period were subtracted from those at
the end to ensure that only the CO2 evolved during each time
point was counted.

The amendments accounted for 93.5% of the total OC
present in the incubated samples. After 547 days of
incubation, the cumulative CO2-C emitted from the control
samples was 32.9 � 21.8 mg C (average � standard deviation)
accounting for 12.3 � 5.4% of the total CO2-C emitted from
the samples. The mean CO2 values from the control samples
were subtracted from the OA-treated samples at each time
point.

Modelling CO2-C emissions
Cumulative CO2-C emissions over the 547 day incubation
were calculated for each sample by summing the CO2-C
emitted (expressed in mg CO2-C g–1 amendment carbon)
during each successive incubation period. A two-pool first
order exponential decay model (Eqn 2) was then fitted to the
cumulative CO2-C emission data (Cmin) collected through time
(t) by minimising the sum of squares of differences between
measured and modelled values through an iterative adjustment
of the size of the fast decomposing pool (Cf), the
decomposition rate constant for the fast pool (f) and the
decomposition rate constant for the slow pool (s). The size
of the slow decomposing pool (Cs) was not iteratively fitted,
but rather set to a value 1000-Cf since our objective was to

examine the relationship between mineralisability and
chemical composition of all OC present in the various
amendments.

Cmin ¼ Cf 1� e�ft
� �þ Cs 1� e�stð Þ ð2Þ

This fitting process was completed using the GRG
Nonlinear solving method of the Solver add-on in Microsoft
Excel 2013 with the default options other than the values
assigned to the constraint precision and convergence values
which were set to 10�10. The constraints imposed on the fitting
process included: f � s, f and s had to be � 1 and � 0 and Cf �
1000. Initial estimates of the values of Cf, f, and s were
calculated according to Eqns 3–5 where CO2-Ci was the
array of measured cumulative CO2-C values obtained for a
sample and Ti was the array of incubation durations. The value
of Cs was calculated from the fitted value of Cf according to
Eqn 6. Varying the magnitude of the initial estimates of Cf, f,
and s by �5, �10 or �20% did not alter the optimal solution
obtained by the solver.

Cf ¼ Median CO2 � Cið Þ ð3Þ

f ¼ � ln
Median CO2�Cið Þ

1000

Median Tið Þ

 !

ð4Þ

s ¼ �LN 1�
1000�Median CO2�Cið Þ

1000

� �

Max Tið Þ

0

@

1

A ð5Þ

Cs ¼ 1000� Cf ð6Þ

Spectroscopic analyses
NMR spectroscopy
Solid-state 13C NMR analyses were completed on a Bruker

200 Avance spectrometer equipped with a 4.7 T wide-bore
superconducting magnet operating at a resonance frequency of
50.33 MHz. Weighed samples (150–600 mg) were packed into
7 mm diameter zirconia rotors with Kel-F end caps and spun at
5 kHz. All analyses were completed using full rotors. Only one
replicate of each finely ground organic amendment was
analysed by NMR. Chemical shift values were calibrated to
the methyl resonance of hexamethylbenzene at 17.36 ppm and
a 50 Hz Lorentzian line broadening was applied to all spectra.

Three separate 13C NMR experiments were performed. An
inversion recovery pulse sequence using eight inversion
recovery times varying from 0.001 to 3.0 s and a recycle
delay (d1) between pulses, varying from 5 to 15 s, was applied
to each amendment. The array and recycle delay values used
for each amendment were varied to optimise the calculation of
the spin-lattice relaxation time (T1H). The T1H values were
used to define amendment specific values for recycle delays in
the subsequent cross polarisation (CP) 13C NMR analyses. In
the CP analyses the recycle delay was set to the longer of 1 s or
five times T1H to ensure that acquired signal intensities were
not influenced by saturation. Subsequent CP analyses used a
3.2 ms, 195 w, 908 pulse, a contact time of 1 ms and a recycle
delay derived from the T1H analysis (1–5 s). Between 2000
and 15 000 scans were collected for each CP analysis. The
number of scans was increased as the amount of C contained in
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the rotor declined across the various amendments. A variable
spin lock experiment using an array of spin lock times (1, 2, 6,
10, 15, 20 ms), a contact time of 1 ms and a recycle delay of 1 s
was performed to calculate amendment specific T1rH values
and allow the CP NMR observability of OC in the amendments
to be quantified as described by Baldock and Smernik (2002)
using glycine as an external signal intensity standard.

All spectral processing including the calculation of T1H
and T1rH and integration of spectral regions was completed
using the Bruker TopSpin 3.2 software. After phasing and
baseline corrections were applied, the absolute NMR signal
intensities acquired for each sample were divided by the
number of scans collected and corrected for empty rotor
background signals. The resultant NMR spectra were
normalised by dividing the intensity at each chemical shift
value by the total intensity acquired over the entire spectrum
(350–100 ppm). The normalised spectra were integrated to
allocate the total signal intensity acquired to the chemical shift
regions described by Baldock et al. (2013b). Additionally, the
normalised spectra in their entirety were used directly in
chemometric analyses.

MIR and NIR spectroscopy
MIR and NIR spectroscopic analyses were completed on a

single replicate of each finely ground OA using a Nicolet 6700
FTIR spectrometer (Thermo Fisher Scientific Inc., MA, USA)
equipped with a Pike AutoDiff-Automated diffuse reflectance
accessory (Pike Technologies, WI, USA). Samples (~100 mg)
were packed into stainless steel cups and the surface levelled
before being loaded into the 60 position wheel associated
with the Pike AutoDiff. MIR spectra were acquired over
8000–400 cm–1 with a resolution of 8 cm–1 using a KBr
beam-splitter and a deuterated triglycine sulphate (DTGS)
detector (Thermo Fisher Scientific Inc.). NIR spectra were
acquired over 10000–4000 cm–1 with a resolution of 8 cm–1

using a quartz beam-splitter and a thermo-electrcally cooled
(TE) indium gallium arsenide (InGaAs) detector (Thermo
Fisher Scientific Inc.). For both MIR and NIR analyses, the
background signal intensity was quantified by collecting 240
scans on a silicon carbide disk before analysing each set of 60
soil samples and used to correct the signal obtained for the soil
samples. A total of 60 scans were acquired and averaged to
produce MIR and NIR reflectance spectra for each individual
sample and the Omnic software (Version 8.0; Thermo Fisher
Scientific Inc., MA, USA) was used to convert the acquired
reflectance spectra into absorbance spectra (log-transform of
the inverse of reflectance).

Correlation and chemometric analyses
Pearson correlation between the parameters derived by

fitting the two-pool decomposition model (Cf, f, Cs and s),
total amount of CO2-C respired, OC and total N contents, C/N
ratio and the allocation of NMR signal intensity to the chemical
shift regions were defined using the R statistical environment
version 4.03 (R Core Team 2020). Initial data cleaning was
conducted using the ‘tidyverse’ package suite (Wickham et al.
2019) before construction of the correlogram using the
‘corrplot’ package (Wei and Simko 2017).

All chemometric analyses including data transformations,
principal components analysis (PCA) and partial least-squares
regression (PLSR) performed on the acquired spectra (NMR,
MIR and NIR) and analytical data were completed using
Unscrambler 10.3 (CAMO Software, Olso, Norway). Prior
to chemometric analyses, the MIR spectra were truncated to
a spectral range of 6000–600 cm–1 and a baseline offset
transformation was applied. The NIR spectra were truncated
to 8000–4000 cm–1 and a baseline offset followed by a second
order polynomial de-trending algorithm were applied to
transform the spectra before applying any chemometric
analyses. No further preprocessing of the NMR spectra was
applied. All spectral data was mean centred by the
Unscrambler software before initiating PCA and PLSR analyses.

PCA was used to assess the variability of the transformed
NMR, MIR and NIR spectra acquired for the 85 OAs. The
PCAs used the spectra acquired from all 85 amendments and
were completed using a full cross validation. PLSR was used
to assess whether predictive algorithms for the parameters of
the two-pool first order exponential decay model (Cf, f, Cs and
s) could be derived from the NMR, MIR or NIR spectra. The
approach taken to perform all PLSR analyses included the
following series of steps. A PLSR model was constructed
using full cross validation. The Kenard Stone algorithm was
then applied to identify 50 of the 85 amendments that best
accounted for the variability in the model parameter being
predicted and the spectral data. These 50 samples were then
defined as a calibration set and the remaining 35 amendments
were defined as an independent validation set. The PLSR was
then repeated using a test set validation approach. The quality
of the derived models (PCA and PLSR) was assessed using a
range of statistics including R2 (the proportion of total variance
of the residuals explained), root mean square error (RMSE),
standard error of prediction (SEP) and bias as presented in
Baldock et al. (2013a).

Data availability

All data collected in this study for the organic amendments
including elemental composition, temporal amounts of OAC
mineralised and acquired NMR, MIR and NIR spectra are
available in the CSIRO Data Access Portal (Farrell et al. 2021).

Results

Elemental contents of organic amendments

Organic C contents of the OAs included in this study ranged
from 44 to 439 g OC kg–1 OA with a mean and standard
deviation of 280 g OC kg–1 OA and 101 g OC kg–1 OA,
respectively. Total N contents ranged from 3 to 72 g N kg–1

OA with a mean and standard deviation of 22 g N kg–1 OA and
17 g N kg–1 OA, respectively. The variation in OC and TN
contents led to a wide range of C/N ratios (5–142 g OC g–1 N)
with an average of 22 g OC g–1 N and a standard deviation of
27 g OC g–1 N. The corresponding values for each class of OA
are provided in Table 1. These results demonstrate the diverse
nature of the OAs used to assess the impact of chemical
composition on rates of decomposition.
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Mineralisation of amendment organic carbon

Total CO2-C emission over the 547 day incubation period from
the OAs varied from 68 to 516 mg CO2-C g–1 OAC with a
mean of 251 and a standard deviation of 105 mg CO2-C g–1

OAC (Fig. 1). The compost and biosolids tended to emit less
CO2-C than the plant residues or manures, consistent with their
potentially greater extent of decomposition. The greatest
variance in CO2-C emission within the individual classes of
OA occurred within the composts and plant residues, with
manures showing the lowest variance. Given that the purpose
of this study was to link OAC chemical composition to
mineralisation, large differences in CO2-C emission across
the amendments were desirable and indicated that an
appropriate set of OAs were included in the study.

The temporal patterns of CO2-C emission obtained over the
entire 547 day incubation are shown in Fig. 2 from single OAs
exhibiting a high (Fig. 2a) and a low (Fig. 2c) CO2-C emission.
When the CO2-C emission data derived from each amendment
were fitted to a two-pool exponential model (Eqn 2), a strong
correspondence between measured and modelled values was
obtained for all 85 OAs. For five of the amendments, the
predicted values obtained for the decomposition rate constants
of the fast and slow pools were equivalent, indicating that the
measured data could be adequately described by a one-pool
exponential model. For the five amendments where this
occurred, the magnitudes of the one-pool decomposition
rate constants were consistent with the slow pool of all
other amendments where CO2-C emission was better
described by the two-pool model. This result suggested that
five amendments did not contain a fast pool and therefore, the
OC contained within these five amendments was allocated
entirely to the slow pool for all subsequent analyses.

Examples of the partitioning of CO2-C emission to the
modelled fast and slow pools is presented in Fig. 2a and c.
Although temporal changes in the slow pool appeared linear,
projecting the CO2-C emission beyond the 547 day incubation
period (Fig. 2b and d) confirmed the exponential shape of
the relationship and indicated that >15 years would be required

for the added amendment carbon to approach complete
mineralisation provided that the temporal trends of CO2-C
emission observed within the incubation period persisted.

The range and distribution of values obtained for each
parameter included in the two-pool model across all
amendments and for each type of amendment are presented
in Fig. 3. For all amendments, the majority of C (>70%) was
allocated to the slow Cs pool with an average, standard
deviation and range of 87%, 7% and 72–100%,
respectively. The size of Cs was greater in the composts
and biosolids than in the manures and plant residues,
although some overlap of the ranges of Cs values did exist.
The decomposition constants associated with the fast pool
ranged from 3.6� 10�4 to 1.6 � 10�1 days–1 while those from
the slow pool were on average two orders of magnitude smaller
and ranged from 3.5 � 10�6 to 7.8 � 10�4 days–1.

Table 1. Mean, standard deviation of the mean, and median organic carbon and total nitrogen contents of the four classes of soil organic
amendments

Parameter Type of organic amendment Count Minimum Maximum Median Mean Standard deviation

Organic carbon content (g OC kg–1 organic amendment)
Compost 54 71 434 248 243 78
Manures 5 364 409 377 382 20
Plant residues 10 411 439 424 425 9
Biosolids 20 44 420 309 281 112

Total nitrogen content (g N kg–1 organic amendment)
Compost 54 4 50 15 16 8
Plant residues 5 16 44 23 26 12
Manures 10 3 23 7 9 6
Biosolids 20 4 72 46 43 20

C/N ratio (g organic carbon/g total nitrogen)
Compost 54 5 92 14 18 15
Plant residues 5 8 24 16 17 7
Manures 10 18 142 57 74 45
Biosolids 20 5 11 6 7 2
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Fig. 1. Box plots showing the minimum, 25th percentile, median, 75th
percentile and maximum total CO2-C emissions measured for 547 days
from all amendments and from each class of amendment. Values above each
box plot show the mean and standard deviation (in parentheses) associated
with the amendments included in each box plot.
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NMR spectroscopic analyses

The 13C NMR spectra acquired for all amendments
exhibited resonances typical of those observed for fresh
plant residues through to materials characterised by
extensive decomposition. The average signal intensity
across all 85 organic amendments for each chemical shift
value (solid black line) as well as the minimum and
maximum signal intensity obtained for each chemical shift
value (dotted black lines) are presented in Fig. 4a. Each of the
lines in Fig. 4a do not represent a real spectrum, but rather
indicate the range and mean spectral intensities obtained at a
given chemical shift value. The largest variations in spectral
intensity occurred within the alkyl (0–45ppm), O- and di-O-
alkyl (60–110 ppm), and carbonyl (160–190 ppm) regions.
Variation in the intensity allocated to aryl (110–145 ppm) and
O-aryl C (145–165 ppm) was present but was of a lesser
magnitude than that noted for the other forms of C.

PCA of the acquired 13C NMR spectra showed a clustering
by amendment type (Fig. 4b). PC-1 accounted for 85% of the
NMR spectral variance. The loading spectrum generated for
PC-1 (Fig. 4c) indicated that positive scores were associated
with signals typical of carbohydrates and negative scores were
associated signals typical of protein (see inset in Fig. 4c).

Decreases in carbohydrate C (particularly cellulose) and
increases in protein C are often associated with increasing
extent of decomposition (Baldock et al. 1997). PC-2 accounted
for 10% of the NMR spectral variance with positive scores
being associated with increased aryl and O-aryl C typical of
lignin and negative scores being associated with increases in
protein, carbohydrate and alkyl C (Fig. 4c). In response to
these differences in PC loadings, the plant residues,
representing the least decomposed material, had high PC-1
scores and low PC-2 scores. The manures fell in an
intermediate position along PC-1 between the plant residues
and more decomposed biosolid materials with some of the
biosolids obtaining positive PC-2 scores. The composts
spanned the largest range covering the majority of the range
of PC-1 scores but tended to have higher contents of aryl and
O-aryl C consistent with a relative accumulation of lignin
during decomposition of the plant materials and green wastes
from which they were derived.

MIR and NIR spectroscopic analyses

Contrary to NMR, which only detects and differentiates forms
of C in the amendments, MIR and NIR detect all chemical
structures capable of absorbing infrared radiation, including
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Fig. 2. Measured and modelled cumulative CO2-C emission from organic amendments exhibiting high (a) and low (c) CO2-C emission over the
duration of the incubation. Projected cumulative mineralisation beyond the incubation duration derived for the same high (b) and low (d) CO2-C
emitting amendments.
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mineral components. The presence of mineral components can
therefore impact on spectral interpretations pertaining to the
organic components due to an overlapping of signals.

The different amendments displayed a wide range of signal
intensities over the 3800–600 cm–1 region of the MIR spectra
and the 7200–4000 cm–1 region of the NIR spectra supporting
a diversity of chemical composition across the amendments
(Fig. 5a and Fig. 6a). As noted for the NMR spectra, the
amendments tended to group together according to their type
(compost, manure, plant residue, biosolid) in the PCA scores
plots derived from the MIR and NIR data (Fig. 5b and Fig. 6b).
However, the extent of separation of amendment types was not
as strong as noted for the NMR spectra, particularly for the
NIR spectra. Although not as definitive as noted for the NMR
PCA, the features of the loading spectra obtained for PC-1 of
the MIR spectra most closely resembles the inverse of a
spectrum collected for cellulose (see inset to Fig. 5c)
suggesting that carbohydrate content increases with
decreasing PC-1 score. The two sharp signals near 1680
and 1540 cm–1 in the loading spectrum of PC-2 may be
indicative of amide groups in protein and the general shape
of the positive values most closely resemble the MIR spectrum
acquired for lignin. An increasing PC-2 score could therefore
be associated with increasing contributions from protein and
lignin. Both of these suggestions are consistent with the
interpretation of the PCA loading spectra derived for the

NMR spectra, reflecting an increasing state of decomposition
from plant residues with high carbohydrates and low protein, to
manures with high carbohydrates and intermediate protein,
and then to biosolids with high proteins (and composts with
varying levels of protein and carbohydrates).

The loadings spectrum for PC-1 of the NIR spectra (Fig. 6c)
resembled the inverse of the spectrum acquired for cellulose
(see inset to Fig. 6c) indicating that carbohydrate content
increased with decreasing PC-1 scores. This result is
consistent with undecomposed plant residue samples being
associated with negative PC-1 scores and a progression
towards more positive PC-1 scores in progressing from the
manure through to biosolid derived amendments. Composts
tended to span across all PC-1 values indicative of their large
diversity in composition. PC-2 scores could best be explained
by a combination of the NIR spectra obtained for lignin and
protein with contents increasing with increasing PC-2 score.
As for the MIR analyses, these results are consistent with
differences in the extent of decomposition across the OAs
indicated by the NMR spectra.

Predicting mineralisation of OAC

Significant correlations (a � 0.05) were observed between the
parameters describing OAC mineralisation over the incubation
period (total mineralisation, Cf, f, Cs, and s) and elemental
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contents of the OAs (Supplementary Fig. S1). Total respiration
was positively correlated with OC content (r = 0.67) but a
correlation with N content or C/N ratio was not observed. Cf,
Cs, and s were correlated with OC content (r = 0.69, r = –0.69
and r = 0.44, respectively), but not with N content or C/N ratio.
However, a positive correlation between N content and f was
observed (r = 0.45).

Various positive and negative correlations were noted
between the C mineralisation parameters and the allocations
of total NMR signal intensity to the chemical shift regions
(Supplementary Fig. S1). Cf was positively correlated with the
proportion of NMR signal intensity allocated to the O-alkyl
and alkyl regions (r = 0.51 and F = 0.37, respectively) and
negatively correlated with the allocation of signal to the aryl,
O-aryl and ketone regions (r = –0.80, r = –0.77, and r = –0.70,
respectively). Given that the sum of the amounts of C allocated
to the fast and slow pools was forced to sum to 1000 mg, the
correlations obtained for Cs were the inverse of those found for
Cf. Positive correlations were observed between f and
allocations of NMR signal to the alkyl, N-alkyl and
carbonyl regions (r = 0.45, r = 0.32, and r = 0.46,
respectively) while negative correlations were observed with
allocations to the O-alkyl and di-O-alkyl regions (r = –0.33 and
–0.39). For the decomposition constant of the slow pool (s),
negative correlations were noted with the allocation of
NMR signal to the aryl, O-aryl and ketone regions
(r = –0.45, r = –0.51, and r = –0.36, respectively).

The ability of the acquired spectroscopic data to predict
CO2-C emission from the various OAs was also assessed

through PLSR. If the chemical composition of the
amendments as defined by the acquired NMR, MIR and NIR
spectra influenced the magnitude and dynamics of CO2-C
emission, it should be possible to develop PLSR algorithms
capable of predicting the magnitude of the four parameters
(Cf, f, Cs, and s) used to model the measured CO2-C emissions.
Additionally, the b-coefficients derived from PLSR prediction
algorithms can be used to identify the spectral information, and
thus the forms of C, important to defining any predictive
capability realised.

The PLSR predictive algorithms and associated
b-coefficients derived using the NMR spectra to predict Cf,
f, Cs and s are presented in Fig. 7. The PLSR predictive
algorithms explained 82% of the variation in Cf for the
calibration amendments and 75% of the variation for the
validation amendments with RMS and RMSEP values of
32.0 and 33.1 mg Cf-C g–1 OAC, respectively (Fig. 7a).
The b-coefficients plot (Fig. 7b) indicated that increases in
NMR signal intensity consistent with carbohydrate and protein
structures increased the allocation of amendment carbon to Cf

while increased signal intensity indicative of lignin structures
reduced the allocation to Cf. The absolute values of the
b-coefficients were inversely proportional to the strength of
the concomitant signals noted in the acquired NMR spectra.
Therefore, it is important to recognise that the presence of
large b-coefficients is not necessarily indicative of regions in
the original NMR spectra where substantial differences in
signal intensity exist. This was exemplified by the smaller
range of signal intensity associated with lignin structures in the
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original spectra (Fig. 4a) relative to that associated with
carbohydrate structures.

Given that the value of Cs was derived as the difference
between 1000 and Cf, the statistics associated with the
calibration and validation PLSR algorithms for Cs (Fig. 7e)
were the same as those obtained for Cf. Additionally, the
b-coefficient plot (Fig. 7f) was a direct inverse of that
obtained for Cf. For the decomposition rate constants f and s,
only weak predictive relationships were obtained (Fig. 7c and e)
from the application of PLSR analyses to the NMR spectra.
However, variations in the magnitude of the b-coefficients
suggested that both rate constants were increased by the
presence of OC with NMR signal intensity consistent with

proteins and carbohydrates and reduced signal intensity
consistent with lignin. These results demonstrated that the
chemical composition of the amendments as defined by the
acquired NMR spectra could be useful in defining the allocation
of amendment carbon to the fast and slow decomposing pools
based on the presence of signal intensity associated with
carbohydrate, protein and lignin structures.

The PLSR predictive algorithms derived from the MIR and
NIR spectra provided similar results to those obtained from
NMR spectra with the exception of a reduction in predictive
capacity (lower R2 values and increased RMS and RMSEP
values) for the prediction of the allocation of amendment
carbon to Cf and Cs (Table 2). Variations in the magnitude
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of the b-coefficients associated with the MIR and NIR PLSR
prediction algorithms were also consistent with those derived
from NMR spectra. Increases in Cf were associated with a
greater presence of carbohydrate and protein structures and a
lower presence of lignin structures (data not shown but
available in Farrell et al. 2021). These findings demonstrate
that MIR or NIR spectra could also be used to predict the
allocation of organic amendment carbon to fast and slow
decomposing pools with only a minor reduction in
prediction power relative to that obtained with NMR analyses.

Discussion

Our comprehensive suite of OAs diverse in OC chemistry
allowed us to demonstrate that intrinsic decomposability of
natural organic matter can be successfully partitioned by
spectroscopic techniques ranging from high-end laboratory
instrumentation (NMR) through to potentially field-portable
technology (NIR). Importantly, spectroscopic discrimination
between the amendments was primarily on a chemically
meaningful basis, drawing out differences in carbohydrate-,
lignin- and protein-like spectroscopic signals.

A wide range of chemical, biological and physical
parameters have been proposed to quantify the biological
stability of potential soil OAs (Bernal et al. 2009; Wichuk
and McCartney 2010). In this study, CO2-C emission expressed
per unit of OAC was measured and used as an index of
biological stability. Measures of respiration have been used
to quantify OAC stability because, under incubation conditions
conducive to optimal decomposition, respiration can provide a
direct measure of the OAC availability to decomposer
organisms. Goyal et al. (2005) found that CO2-C emission,
along with variations in C/N ratio, provided the most reliable
index of compost stability. Bernal et al. (1998) measured CO2-
C emission from four maturation states of seven different
composts over a 70 day incubation period. After fitting a
combined first-order fast pool and zero-order slow pool to
the cumulative CO2-C emission data, Bernal et al. (1998)
found that Cf and Cs accounted for 28–489 and 511–972 mg C
g–1 compost C, respectively. The values of Cf were larger
and the values of Cs were smaller than those derived in this
study (0–276 and 723–1000 mg C g–1 amendment carbon,
respectively). Such differences may be attributable to
variations in the nature of the materials incubated,

environmental conditions under which the incubations
occurred, incubation duration and the model fitted to the
data; however, the magnitude of the range in Cf and Cs

values in this study demonstrates the substantial variation in
stability that can exist across different OAs.

In addition to CO2-C emission, a range of other parameters
including physical (e.g. temperature, particle size, water
content), chemical (e.g. C/N ratio, NH4

+/NO3
– ratio, cation

exchange capacity, pH, humification indices) and biological
(e.g. microbial biomass, enzyme activity) have been applied to
evaluate the potential stability of decomposing organic
materials (Bernal et al. 2009; Farrell and Jones 2010;
Wichuk and McCartney 2010; Higashikawa et al. 2014).
Baldock (2007) proposed that these parameters could be
divided into two groups: (1) those that define whether an
organic material will be decomposed and (2) those that
influence the rate at which materials are decomposed.
Physical parameters were assigned to the latter group since
they do not define the potential for decomposition but rather
alter the rate at which decomposition processes proceed. In this
study, any impacts due to the physical properties of the OAs
were reduced by fine grinding.

Understanding the impact of changes in chemical and
biological properties fits into the first group of parameters
that define whether an organic material will decompose or
not and can be assessed by quantifying elemental and
biochemical compositional properties. One of the elemental
properties often used to characterise the susceptibility of
organic materials to decomposition is the C/N ratio (Taylor
et al. 1989). No relationship was found between initial C/N
ratio of the OAs included in this work and the parameters
derived to quantify OC mineralisation over the 547 day
incubation period used. This result supports the suggestion
of Incerti et al. (2017) that the reliability of C/N as a
decomposability indicator throughout the decomposition
process may be questionable as the molecular composition
of the organic materials present change as decomposition
progresses. A correlation between N content and the
predicted decomposition rate constant of the fast pool (f)
was noted in this study. Although it only accounted for
20% of the variability, similar correlations were noted
between f and the proportion of signal intensity in NMR
regions associated with protein (alkyl, N-alkyl and
carbonyl). Taken together these suggest some reliance on

Table 2. Statistics obtained for the PLSR algorithms derived from MIR and NIR spectra to predict the parameters of the two-pool exponential
decomposition model

MIR spectra NIR spectra
PLSR statistic Sample set Cf f Cs s Cf f Cs s

Slope Cal 0.749 0.451 0.749 0.790 0.757 0.361 0.757 0.359
Val 0.693 0.283 0.693 0.373 0.593 0.238 0.593 0.36

Intercept Cal 30.2 0.0215 30.2 0.0000659 33.8 0.0287 33.8 0.00022
Val 43.8 0.0303 43.8 0.000188 47.1 0.0298 47.1 0.000207

RMSE Cal 37.1 0.0168 37.1 0.0000775 35.4 0.0218 35.4 0.000129
Val 37.8 0.0159 37.8 0.000142 36.4 0.0155 36.4 0.000126

R2 Cal 0.749 0.451 0.749 0.790 0.757 0.361 0.757 0.359
Val 0.666 0.114 0.666 0.193 0.743 0.326 0.743 0.529
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the presence of N as protein during the early more rapid phase
of decomposition.

Quantification of the impact of biochemical properties is
now possible using spectroscopic measurements combined
with chemometric techniques. However, even in the absence
of chemometric analyses, useful information pertaining to
differences in chemical composition existing between OAs
or temporal changes that occur as decomposition proceeds can
be obtained from spectroscopic analyses. Ait Baddi et al.
(2004) and Spaccini and Piccolo (2008) interpreted MIR
spectra collected from materials exposed to increasing
durations of composting to show a loss of labile aliphatic C
and an accumulation of aromatic and stable hydrophobic
C. Assessment of MIR spectra acquired by Hsu and Lo
(1999) over a 122 day composting period was reported to
reveal an increase in signal intensity associated with
aromaticity and a decrease in signal associated with
carbohydrates.

Baldock et al. (1997) demonstrated that the ratio of 13C
NMR signal intensity found in the alkyl to O-alkyl chemical
shift regions could be used as an index of the degree of
decomposition of organic materials and that the absolute
values and extent of change showed a dependence on the
nature of the initial material. Similar results were obtained
by Preston et al. (2009) on characterising litter from 6-year
field incubation studies. Incerti et al. (2017) developed a
modelling framework that used the allocation of 13C NMR
signal intensity to chemical shift ranges within the alkyl, N-
alkyl, O-alkyl and di-O-alkly shift regions to enhance the
prediction of decomposition rates.

Although the information gained from spectra alone is
informative, it is difficult to (1) quantify the magnitude of
structural change, (2) extract all relevant information from
spectra, particularly in complex spectral regions where signal
intensity can be derived from multiple sources and (3) define
the relationship between spectral data and analytical data.
Coupling spectroscopic data with analytical data through
chemometric analyses can be used to develop predictive
capabilities. Higashikawa et al. (2014) measured a range of
compost maturity indices for 15 different composts and then
successfully built a series of MIR/PLSR predictive models for
the indices to allow the prediction of all indices from one MIR
spectrum. Similar results were obtained by Vergnoux et al.
(2009) and Lillhonga et al. (2009) using NIR/PLSR to predict
a series of stability parameters measured temporally on
composts. Martínez-Sabater et al. (2009) used a combination
of 13C NMR and MIR with multivariate analyses to quantify
temporal changes in the chemical composition of composts and
develop predictive algorithms defining composting time as a
function of whole spectra or spectral components. Bonanomi
et al. (2013) coupled measured decay rates from a litter
bag experiment with acquired 13C NMR spectra through
principal component regression analysis to build a predictive
litter decomposition algorithm. Thus, it is apparent that
spectroscopy coupled with chemometric analysis shows
promise to predict stability, and therefore also C loss from
OAs such as those studied here.

In this study, chemometric analyses (PCA and PLSR) were
applied to NMR, MIR and NIR spectra to define differences in

chemical composition across a series of 85 different soil OAs
and to predict the allocation of amendment carbon to fast and
slow decomposing pools. In the application of PCA to the
NMR spectra, in addition to identifying which amendments
had different chemical compositions based on an examination
of the scores plot (Fig. 4b) the loadings spectra (Fig. 4c) could
be used to identify the chemical changes associated changes in
positioning on the scores plot. When the loadings spectra
were compared with NMR spectra acquired for known
biomolecules, the compositional differences responsible for
influencing PC-1 scores (a positive contribution from
carbohydrate and a negative contribution from protein) and
PC-2 scores (a positive contribution from lignin and negative
contributions from protein and carbohydrate) became evident.
Taking a similar approach in the PLSR analyses by examining
the b-coefficient spectra (Fig. 7b, d, f and h) contributed to
understanding why different allocations of amendment carbon
to Cf and Cs were obtained (Cf increased as the allocation to
protein and carbohydrate C increased and decreased as in
response to an increasing contribution of lignin). The
usefulness of these loading and b-coefficient spectra in
helping to explain the reasons behind separation of
amendments in PCA space and the prediction of Cf by
PLSR algorithms do not appear to have been reported
previously.

Despite success across all three spectral techniques in
predicting the partitioning of OAC to labile (Cf) and more
resistant (Cs) pools, predicting the magnitude of the rate
constants associated with the mineralisation of C from these
pools (f and s, respectively) was not successful. In soils,
decomposition of OC may be constrained through
protection of the OC by sorption to clay particles (Schmidt
et al. 2011) or occlusion within aggregate structures (Dungait
et al. 2012). By using only minimal soil within our sand
matrix, we sought to avoid these factors which obscure the
intrinsic decomposability of a substrate and thus the
relationship back to its chemical composition. These, and
other factors (such as temperature and oxygen, water, and
nutrient availability, as well as the composition of the
microbial community) modify these decomposition rate
constants (Jenkinson 1990; Gregorich et al. 2017).
Although we normalised for water and oxygen availability,
temperature, starting microbial community composition and
the potential for protection from decomposition through our
experimental design, they were not properties that would be
expressed in a spectral analysis of the amendments. This is
particularly true for NMR, which in the configuration used
here only detected chemically different forms of OC but yet
gave the most accurate predictions of pool size.

Conclusions

The best PLSR algorithms for predicting whether OAC was
associated with a pool or C exhibiting in a fast (Cf) or slow (Cf)
susceptibility to mineralisation were obtained using the NMR
spectra. Decreases in predictive capability (reductions in R2

and RMSE values) using MIR and NIR spectra were minor.
Therefore, with adequate calibration, rapid and cost-effective
predictions of the allocation of OAC to fast and slow
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decomposing pools based on MIR or NIR should be possible.
However, given our inability to accurately predict rate
constants with any of the spectroscopy techniques used
here, prediction of expected residence time upon application
to soil would likely require information on soil, environmental
and management properties at the site of application.
Nevertheless, deployment of field portable NIR
spectrometers, backed by appropriate calibrations, would
allow OA producers to quickly and cost effectively monitor
and manage composition to provide products that are
appropriately matched to desired outcomes.
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