Supplementary Material

Carbon-dioxide-driven increase in foliage projective cover is not the same as increased woody plant density: lessons from an Australian tropical savanna

Gabriel M. Crowley^{A,*} and *Stephen A. Murphy*^{A,B}

^AArtemis Nature Fund Inc., Malanda, Qld 4885, Australia

^BResearch and Recovery of Endangered Species Group, School of Environmental and Earth Sciences, University of Queensland, Saint Lucia, Qld 4072, Australia

*Correspondence to: Email: gabriel.m.crowley@gmail.com

Supplementary material for Crowley and Murphy: *Carbon-dioxide-driven increase in projective foliage cover is not the same as elevated carbon sequestration: Lessons from an Australian tropical savanna*

Appendix S1. Persistent Green and fire mapping	2
Appendix S2. Characteristics of the study area	6
Appendix S3. Data layers used in modelling	15
Appendix S4. Variography	19
Appendix S5. Modelling of Early Dry Season and Late Dry Season fire occurrence on Cape York	
Peninsula (2001-2018)	21
Appendix S6. Modelling of Autumn Persistent Green on Cape York Peninsula (2001-2018)	23

Appendix S1. Persistent Green and fire mapping

Persistent Green (PG) mapping is undertaken every three months by the Department of Environment and Science (2022) as a measure of foliage area. PG is derived from sequential Landsat-5 TM (2001-2013) and Landsat-7 ETM+ (1999 onwards; Armston *et al.* 2009) images after the effects of landform, shadows, clouds, water, and variation in radiance and reflectance are removed using a masking process with an average accuracy of 97-98% (Tindall *et al.* 2014). Fractional green cover is then extracted using an unmixing process with a root mean square error of 9.5% (Scarth *et al.* 2015b). PG is calculated from the green fraction that persists through several sequential Landsat images. Values are stabilized through comparison with imagery two years on either side of the date of interest, creating a two-year lag in PG availability. PG is calibrated using on-ground measurements of vegetation structure collected from more than 1,500 sites across Australia (Scarth *et al.* 2015a). Maps of fires across Northern Australia, derived from MODIS, VIIRS and NOAA satellite imagery, are available through the North Australia Fire Information website at a resolution of 250 m (Charles Darwin University 2021).

PG is available as a single raster for each of four seasons each year: Summer (December to February), Autumn (March to May), Winter (June to August) and Spring (September to November; Fig. S1) using images from a range of dates depending on availability of cloud-free imagery. Fire mapping for carbon accounting in northern Australia uses two seasons: Early Dry Season (EDS; January to July) and Later Dry Season (LDS; August to December (Whitehead *et al.* 2015). Average fire extent on Cape York Peninsula between 2000 and 2018 was lowest in Autumn (0.8 ± 0.2%; Fig. S1). Hence, PG from Autumn (APG) is least affected by fires from the current year (Fig. S1). We therefore APG used to examine any lasting impact of previous-year fires on changes in foliage area. However, this selection weakens the ability of the imagery to capture the impact of variation in wet season rainfall, as approximately one-quarter of annual rainfall occurs in Autumn (Fig. S2).

2

Fig. S1. Frequency of cloudy days (1991-2020) and extent of fire (2000-2018) (mean ± s.e.m.) across Cape York Peninsula.

A cloudy day is when the mean cloud cover at 9 am and 3 pm is at least 75% of the sky.

Sources of data: Cloud cover: (Bureau of Meteorology 2023); Fire extent: Charles Darwin University (2021).

Fig. S2. Rainfall (1991-2020) and extent of fire (2000-2018) (mean ± s.e.m.) across Cape York

Peninsula.

EDS = Early Dry Season; LDS = Late Dry Season.

Source of data: Rainfall: (Bureau of Meteorology 2023); Fire: Department of Environment and Science (2018).

References

Armston, J, Denham, R, Danaher, T, Scarth, P, Moffiet, T (2009) Prediction and validation of foliage projective cover from Landsat-5 TM and Landsat-7 ETM+ imagery. *Journal of Applied Remote Sensing* **3**, 033540. doi:10.1117/1.3216031

Bureau of Meteorology (2023) 'Climate data online.') Available at http://www.bom.gov.au/climate/data/ [Verified 12 Apr 2023]

Charles Darwin University (2021) 'NAFI: North Australian fire information website.' (Charles Darwin University: Darwin) Available at https://www.firenorth.org.au [Verified 12 Apr 2023]

Department of Environment and Science (2018) 'Biodiversity status of 2017 remnant regional ecosystems - Queensland.' (Department of Environment and Science: Brisbane) Available at [Superceded]

Department of Environment and Science (2022) 'Seasonal persistent green - Landsat, JRSRP algorithm Version 3.0, Australia coverage. Terrestrial Ecosystem Research Network.' (Queensland Government: Brisbane) Available at <u>https://portal.tern.org.au/metadata/TERN%2Fdd359b61-3ce2-4cd5-bc63-d54d2d0e2509</u> [Verified 12 Apr 2023]

Scarth, P, Armston, J, Flood, N, Denham, R, Collett, L, Watson, F, Trevithick, R, Muir, J, Goodwin, N, Tindall, D, Phinn, S (2015a) Operational application of the landsat timeseries to address large area landcover understanding. *ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences* **XL-3/W3**, 571-575. doi:10.5194/isprsarchives-XL-3-W3-571-2015

Scarth, P, Guerschman, JP, Clarke, K, Phinn, S (2015b) Validation of Australian Fractional Cover Products from MODIS and Landsat Data. In 'AusCover Good Practice Guidelines: A technical handbook supporting calibration and validation activities of remotely sensed data product. Version 1.2.' (Eds. A Held, S Phinn, M Soto-Berelov and S Jones) pp. 123-138. (TERN AusCover: Brisbane)

Tindall, D, Trevithick, R, Scarth, P, Collett, L, Goodwin, N, Denham, R, Flood, N (2014) Ground cover and fire in the grazing lands: RP64G Synthesis Report. Department of Science, Information Technology, Innovation and the Arts, Brisbane Available at <u>https://www.publications.qld.gov.au/dataset/ground-cover-fire-grazing/resource/6258683f-02d0-</u> <u>4dd3-93a0-83cbecdd7d01</u> [Verified 12 Apr 2023]

Whitehead, PJ, Russell-Smith, J, Yates, C (2015) Reimagining fire management in fire-prone northern Australia. In 'Carbon Accounting and Savanna Fire Management.' (Eds. BP Murphy, AC Edwards, MC P. and J Russell-Smith) pp. 23-55. (CSIRO: Australia)

Appendix S2. Characteristics of the study area

Fig. S3. Climate of the study area.

Sources of data: Köppen climate zones: Bureau of Meteorology (2006) based on Dick (1975); 1961-1990 Average annual rainfall: Bureau of Meteorology (2008); Rainfall seasonality: Fick and Hijmans (2017); and Rainfall variability: Bureau of Meteorology (2021).

		Main study area	Artemis Antbed Nature Refuge
Name	1:5 million scale Broad Vegetation Group (BVG) ^a	(%) ^b	(%) ^b
Rainforest	1. Vine forests and thickets	1.62	-
Eucalypt woodland	3. Woodlands to open forests, primarily dominated by Darwin Stringybark, Clarkson's Bloodwood, Hyland's Bloodwood or Ironbarks, often with Melville Island bloodwood or Cooktown Ironwood	45.45	56.4
	6. Eucalypt low open woodlands usually with spinifex understorey	2.22	-
Floodplain forest	4. Open forest and woodlands drainage lines and alluvial plains, primarily dominated by Coolabah/Coolibah, Shiny-leaved and Molloy Box	12.35	3.7
Tea tree woodland	8. Open woodlands on depositional plains, primarily dominated by Broad-leaved Tea Tree, often with other tea tree species, bloodwoods and/or bauhinia. Includes riparian paperbark communities	18.82	26.3
Grassland	13. Tussock grasslands and forblands characterised by wanderrie, wire and panic grasses, Annual Kangaroo Grass, Ribbon Grass, Silky Browntop and Queensland Bluegrass	7.72	9.1
Other communities	2. Wet tall open forest characterised by Red Mahogany, White Mahogany, Pink Bloodwood, Gympie Messmate and Turpentine, or Rose Gum, often with Forest Oak and Stringybark Pine in the subcanopy	0.01	-
	5. Dry woodlands on inland depositional plains, dominated by Shiny-leaved and Molloy Box on Cape York Peninsula and by Gilbert River Box and Silver-leaved Ironbark on the Gulf Plains	3.97	-
	Woodlands to open forests dominated by Coast Cypress Pine with ironbarks, bloodwoods and wattles	0.08	-
	10. Lancewood woodlands and open forests other wattle- dominated communities	2.79	-
	11. Mixed species low open woodland to low woodland characterised by Beefwood, Hooker's Bauhinia, Whitewood, Yellow-wood, Cooktown Ironwood, wattles and kapoks	0.82	-
	12. Heath communities characterised by Thryptomene, Liniment Tree or Brown Salwood on Cape York Peninsula, and by Weeping Ghost Gum in the Gulf Plains	1.61	4.4
	14. Spinifex grassland	0.14	-
	15. Seasonal swamps, lakes and lagoons, often fringed with broad-leaved and other tea trees eucalypts, commonly vegetated with Mud Grass, Wild Rice, sedges or rushes	0.65	0.2
	16. Mangroves and tidal saltmarshes	1.75	-

Table S1. Classification and extent of vegetation communities assessed in this study.

a: Department of Environment and Science (2018a); b: (Department of Environment and Science 2021).

Fig. S4. Vegetation of the study area.

Source of data: Department of Environment and Science (2018a).

Grazing		Study
tenure	Land use/Tenure class	area (%)
1	Grazed up until 2018	76.5
0	Aboriginal reserve until 1987 followed by transfer to Aboriginal tenure	7.6
0	Managed for conservation from at least 1990	6.4
0	Managed for conservation from at least 2000	1.1
N/A	Grazed up until 2010	6.1
N/A	Excluded	2.4
	Total area (km ²)	272,885
	Aboriginal land in 2018 (%)	28.7

Table S2. Grazing and land tenure classes of the study area.

Sources of data: Balkanu Cape York Aboriginal Corporation (2004); Cape York Land Council (2014); Department of Environment and Science (2020); Department of Natural Resources (2018); Holmes (2011); State of Queensland (1994-2018); L. Kazmeier pers. comm. (2021); and personal knowledge of the authors.

Fig. S5. Land use and tenure classes in the study area.

Sources of data: See Table S2. Disclaimer: This map does not claim to represent Native Title or any other land claims.

Fig. S6. Fire frequency in the study area over the study period: (a) All fires; and (b) Late Dry Season fires.

Sources of data: North Australian Fire Information website (Charles Darwin University 2021).

Fig. S7. Fire frequency in the study area for 2000-2008: (a) All fires; and (b) Late Dry Season fires; and for 2009-2018: (c) All fires; and (d) Late Dry Season fires.

Sources of data: North Australian Fire Information website (Charles Darwin University 2021).

Fig. S8. Vegetation and vegetation change at monitoring plots in and around Artemis Antbed

Nature Refuge.

Numbers in brackets indicate number of woody plants (1 - 3 m high, > 3 m high).

Source of vegetation mapping data: (Department of Environment and Science 2018b), as adapted by Eda Addicott in 2021.

References

Balkanu Cape York Aboriginal Corporation (2004) Living on Saltwater Country: Cape York Peninsula -Sea Country Management Needs and Issues. National Oceans Office, Canberra Available at <u>https://www.agriculture.gov.au/sites/default/files/documents/losc-capeyork.pdf</u> [Verified 12 Apr 2023]

Bureau of Meteorology (2006) 'Köppen climate classification (base climate related classification datasets).') Available at <u>http://www.bom.gov.au/climate/averages/climatology/gridded-data-info/metadata/md_koppen_classification.shtml</u> [Verified 12 Apr 2023]

Bureau of Meteorology (2008) 'Australian average rainfall data from 1961 to 1990. Bioregional assessment source dataset.') Available at <u>https://data.gov.au/data/dataset/fd91f2d4-2cc8-4d5d-9f67-8fe8af1e2676</u> [Verified 12 Apr 2023]

Bureau of Meteorology (2021) 'Rainfall variability (1900-2019).' (Commonwealth of Australia) Available at <u>http://www.bom.gov.au/jsp/ncc/climate_averages/rainfall-variability/index.jsp</u> [Verified 12 Apr 2023]

Cape York Land Council (2014) Annual Report 2013-14. Available at <u>https://www.cylc.org.au/wp-content/uploads/2018/06/cylc_annual_report_2013-14.pdf</u> [Verified 12 Apr 2023]

Charles Darwin University (2021) 'NAFI: North Australian fire information website.' (Charles Darwin University: Darwin) Available at https://www.firenorth.org.au [Verified 12 Apr 2023]

Department of Environment and Science (2018a) 'Biodiversity status of 2017 remnant regional ecosystems - Queensland.' (Department of Environment and Science: Brisbane) Available at [Superceded]

Department of Environment and Science (2018b) 'Preclearing Broad Vegetation Groups -Queensland Version 4.0 (14 Dec 2018).' (State of Queensland: Brisbane) Available at [Superceded]

Department of Environment and Science (2020) 'Land use mapping - 1999 to 2013 - Cape York and Torres Strait Islands NRM.' (State of Queensland: Brisbane) Available at <u>http://qldspatial.information.qld.gov.au</u> [Verified 12 Apr 2023]

Department of Environment and Science (2021) 'Biodiversity status of pre-clearing and 2019 remnant regional ecosystems - Queensland.' (Department of Environment and Science: Brisbane) Available at <u>https://qldspatial.information.qld.gov.au</u> [Verified 12 Apr 2023]

Department of Natural Resources, Mines and Energy (2018) Cape York Peninsula Tenure Resolution Program Dealings. Edition 35.

Dick, RS (1975) A map of the climates of Australia according to Köppen's principles of definition. *Queensland Geographic Journal* **3**, 33-69.

Fick, SE, Hijmans, RJ (2017) Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. *International Journal of Climatology* **37**, 4302-4315. doi: 10.1002/joc.5086

Holmes, J (2011) Land Tenures as Policy Instruments: Transitions on Cape York Peninsula. *Geographical Research* **49**, 217-233. doi:10.1111/j.1745-5871.2011.00692.x

State of Queensland (1994-2018) 'Queensland Legislation.' (State of Queensland: Brisbane) Available at <u>http://www.legislation.qld.gov.au</u> [Verified 12 Apr 2023]

Appendix S3. Data layers used in modelling

Table S3. Data layers used in generalised additive modelling to explain incidence of fire and change in Seasonal Persistent Green. Processing was undertaken in R or QGIS.

Variable	Description and source	File properties	Processing
Sample points	Random sample stratified by vegetation type, excluding points on areas of non-remnant vegetation, or properties under extractive use or for which grazing land tenure had changed between 2001 and 2018	Text (csv) file in EPSG:3577	None
Autumn Persistent Green	Seasonal persistent green 2001-2018 (Department of Environment and Science 2022)	Raster with 30 m pixels in EPSG:3577	None
Vegetation types	1:5 million Broad Vegetation Groups (Department of Environment and Science 2021)	Polygon shapefile at 1:100,000 in EPSG:4283	Rasterised to 30 m resolution in EPSG:3577
Early Dry Season fires	Early Dry Season fire scar mapping (Charles Darwin University 2021)	MODIS-derived, 250 m pixels in EPSG:4283	Disaggregated to 30 m resolution in EPSG:3577
Late Dry Season fires	Late Dry Season fire scar mapping (Charles Darwin University 2021)	MODIS-derived, 250 m pixels in EPSG:4283	Disaggregated to 30 m pixels in EPSG:3577
Annual rainfall	Mean annual rainfall (1961-1990; Bureau of Meteorology 2008)	Raster with 0.025° (~2.5km) pixels in EPSG:4283	Disaggregated to 30 m resolution in EPSG:3577
One-, two- and three-yearly percentage rainfall anomalies	Calculated from 12-monthly (July to June Rainfall anomalies (1986 to 2018) (Bureau of Meteorology order Q- L39D325264	Raster in netCDF format with 0.05° (~5.7 km) pixels in EPSG:3577	Disaggregated to 30 m resolution in EPSG:3577
Grazing land tenure	Property-scale land use map derived from Balkanu Cape York Aboriginal Corporation (2004); Cape York Land Council (2014); Department of Environment and Science (2020); Department of Natural Resources (2018); Holmes (2011); State of Queensland (1994-2018); L. Kazmeier pers. comm. (2021); and personal knowledge of the authors	Polygon shapefile at 1:100,000 resolution in EPSG:3577	Rasterised to 30 m resolution in EPSG:3577

Fig. S9. Sample points used in the modelling, stratified by vegetation type Source of vegetation data: Department of Environment and Science (2018).

Vegetation type	Points
Rainforest	959
Eucalypt woodland	5,246
Floodplain forest	5,742
Teatree woodland	5,591
Grassland	4,836
Other vegetation	5,248
Total	27,622

Table S4. Number of sample points used in the modelling, stratified by vegetation type

References

Balkanu Cape York Aboriginal Corporation (2004) Living on Saltwater Country: Cape York Peninsula -Sea Country Management Needs and Issues. National Oceans Office, Canberra Available at <u>https://www.agriculture.gov.au/sites/default/files/documents/losc-capeyork.pdf</u> [Verified 12 Apr 2023]

Bureau of Meteorology (2008) 'Australian average rainfall data from 1961 to 1990. Bioregional assessment source dataset.') Available at <u>https://data.gov.au/data/dataset/fd91f2d4-2cc8-4d5d-9f67-8fe8af1e2676</u> [Verified 12 Apr 2023]

Cape York Land Council (2014) Annual Report 2013-14. Available at <u>https://www.cylc.org.au/wp-</u>content/uploads/2018/06/cylc annual report 2013-14.pdf [Verified 12 Apr 2023]

Charles Darwin University (2021) 'NAFI: North Australian fire information website.' (Charles Darwin University: Darwin) Available at https://www.firenorth.org.au [Verified 12 Apr 2023]

Department of Environment and Science (2018) 'Biodiversity status of 2017 remnant regional ecosystems - Queensland.' (Department of Environment and Science: Brisbane) Available at [Superceded]

Department of Environment and Science (2020) 'Land use mapping - 1999 to 2013 - Cape York and Torres Strait Islands NRM.' (State of Queensland: Brisbane) Available at http://gldspatial.information.gld.gov.au [Verified 12 Apr 2023]

Department of Environment and Science (2021) 'Preclearing Broad Vegetation Groups - Queensland Version 5.0 (1 Mar 2021).' (State of Queensland: Brisbane) Available at [Superceded]

Department of Environment and Science (2022) 'Seasonal persistent green - Landsat, JRSRP algorithm Version 3.0, Australia coverage. Terrestrial Ecosystem Research Network.' (Queensland Government: Brisbane) Available at <u>https://portal.tern.org.au/metadata/TERN%2Fdd359b61-3ce2-4cd5-bc63-d54d2d0e2509</u> [Verified 12 Apr 2023]

Department of Natural Resources, Mines and Energy (2018) Cape York Peninsula Tenure Resolution Program Dealings. Edition 35.

Holmes, J (2011) Land Tenures as Policy Instruments: Transitions on Cape York Peninsula. *Geographical Research* **49**, 217-233. doi:10.1111/j.1745-5871.2011.00692.x

State of Queensland (1994-2018) 'Queensland Legislation.' (State of Queensland: Brisbane) Available at <u>http://www.legislation.qld.gov.au</u> [Verified 12 Apr 2023]

Appendix S4. Variography

Fig. S10. Model variogram showing the features that reflect vegetation structure as explained in the text.

Table S5. Interpretation	of variogram	features	(after	Hamada	et al.	2019).
--------------------------	--------------	----------	--------	--------	--------	--------

Variogram			
feature	Attribute	Categories	Foliage cover (PG)
Sill	Variation in foliage cover (PG)	High	Varies greatly between absent and closed canopy
		Low	Uniform, whether absent, closed or intermediate
Nugget	Noise: within-pixel variation in foliage cover, not explained by distance	High	High within-canopy (within-pixel) variation
		Low	Low within-canopy (within-pixel) variation
Partial sill	Variation in foliage cover	High	High between-canopy (between pixel) variation
explained by distance associated with spati autocorrelation	explained by distance or associated with spatial autocorrelation	Low	Low within-canopy (between pixel) variation
Range	Size of dominant patches of canopy cover	High	Large canopy patches interspersed with large canopy gaps
		Low	Small canopy patches interspersed with small canopy gaps
Form	rm Pattern of canopy features, and variance in their distribution	Gaussian	Variance increases gradually at short distances, then more rapidly towards sill e.g. relatively uniform patches of trees and canopy gaps
		Exponential	Variance initially increases rapidly, then gradually tapers towards sill. e.g. small clumps of trees within an open grassland
		Spherical	Variance increases at a relatively constant rate as distance between points increases only tapering close to the sill. e.g. trees and canopy gaps relatively interspersed

Reference

Hamada, Y, Szoldatits, K, Grippo, M, Hartmann, HM (2019) Remotely sensed spatial structure as an indicator of internal changes of vegetation communities in desert landscapes. *Remote Sensing* **11**, 1495. doi:10.3390/rs11121495

Appendix S5. Modelling of Early Dry Season and Late Dry Season fire occurrence on Cape York Peninsula (2001-2018)

Model inputs

R Package: mgcv; Family: gaussian; Link function: identity

Formula

- A. EDS ~ s(Year, Vname, k = 18, bs = "fs") + s(BLY, bs = "re") + s(Grazing, bs = "re") + s(Rain.Avg, bs = "re") + s(RA1, bs = "re") + s(x, y, bs = "re")
- B. EDS ~ s(Year, Vname, k = 3, bs = "fs") + s(BLY, bs = "re") + s(Grazing, bs = "re") + s(Rain.Avg, bs = "re") + s(RA1, bs = "re") + s(x, y, bs = "re")
- C. LDS ~ s(Year, Vname, k = 18, bs = "fs") + s(EDS, bs = "re") + s(BLY, bs = "re") + s(Grazing, bs = "re") + s(Rain.Avg, bs = "re") + s(RA3, bs = "re") + s(x, y, bs = "re")
- D. LDS ~ s(Year, Vname, k = 3, bs = "fs") + s(EDS, bs = "re") + s(BLY, bs = "re") + s(Grazing, bs = "re") + s(Rain.Avg, bs = "re") + s(RA3, bs = "re") + s(x, y, bs = "re")

Key to abbreviations

BLY = previous year fire season (classes: Unburnt, EDS, LDS)	RA3 = three-year rainfall anomaly (%)
bs = basis type	Rain.Avg = Average annual rainfall (1961-1990) (mm)
EDS = Burnt Early Dry Season (current year)	re = random effects
fs = factor smooth	s = smooth function
Grazing = Grazing land tenure (Classes: Yes, No)	Vname = Vegetation type (Classes: Rainforest, Eucalypt woodland, Floodplain forest, teatree woodland, Grassland, Other vegetation)
k = knots (nodes)	x = Easting
LDS =Burnt Late Dry Season (current year)	y = Northing
RA1 = one-year rainfall anomaly (%)	

Model outputs

Table S6. Generalized additive models that best explained fire occurrence on Cape York Peninsula (2001-2018).

Parameter	Occurrence of Early Dry Season fire				Occurrence of Late Dry Season fire				
Formula	А		В		(С		D	
Model	Best-fit		Maximum smooth		Binomial		Maximum smooth		
Family	Binomial		Binomial		Binc	Binomial		mial	
Link function	Logit		Logit		Logit		Logit		
Adjusted r^2	0.0922		0.0	082	0.165		0.1	.37	
Deviance explained (%)	16	.6	14.9		16.2		13.8		
k for fixed effects	1	8	:	3	1	8	3	3	
Variable	Estimate	р	Estimate	p	Estimate	p	Estimate	p	
Intercept	-4.231	0.0000	-4.227	0.0000	-8.687	0.192	-9.566	0.148	
	e.d.f.*	p	e.d.f.*	p	e.d.f.*	p	e.d.f.*	p	
	١	ear interactio	ons (basis typ	pe = factor sm	nooth) as fixed effects				
Vegetation	103.7	0.0000	16.68	0.0000	106.0	0.0000	16.94	0.0000	
		Rando	om effects (b	asis type = rar	dom effects)			
Burnt EDS	-	-	-	-	0.909	0.0000	0.914	0.0000	
Burnt last year	2.000	0.0000	2.000	0.0000	1.998	0.0000	1.998	0.0000	
Grazing land tenure	0.999	0.0000	0.999	0.0000	0.995	0.0000	0.995	0.0000	
Average rainfall	1.000	0.0000	1.000	0.0000	1.000	0.0000	1.000	0.0000	
1-year rainfall anomaly	0.993	0.0000	0.002	0.0000	-	-	-	-	
3-year rainfall anomaly	-	-	-	-	0.995	0.0000	1.000	0.0000	
Location (x, y)	0.995	0.687	0.9916	0.762	0.980	0.976	0.938	0.987	
			Analysis of	deviance test	ts (X ²)				
Residual	d.f.	Deviance	d.f.	Deviance	d.f.	Deviance	d.f.	Deviance	
	497,082	168,106	497,173	171,606	497,081	445,675	497,171	462,467	
d.f.		-90.	.70			-89.	.98		
Deviance		-3,4	.99		-16,792				
p	0.0000				0.0000				

* e.d.f. = effective degrees of freedom

Appendix S6. Modelling of Autumn Persistent Green on Cape York Peninsula (2001-2018)

Model input

R Package: mgcv; Family: gaussian; Link function: identity

Formula

- A. APG ~ s(Year, Vname, k = 18, bs = "fs")
- B. APG ~ s(Year, Vname, k = 18, bs = "fs") + (Vname * Burnt.LY) + (Vname * Grazing) + s(Rain.Avg, bs = "re") + s(RA3, bs = "re") + s(x, y, bs = "re")

Key to abbreviations

APG = Seasonal Persistent Green	Rain.Avg = Average annual rainfall (1961-1990)
bs = basis type	re = random effects
Burnt.LY (Classes: Unburnt, EDS, LDS)	s = smooth function
fs = factor smooth	Vname = Vegetation type (Classes: Rainforest, Eucalypt woodland, Floodplain forest, teatree woodland, Grassland, Other vegetation)
Grazing = Grazing land tenure	x = Easting
(Classes: Yes, No)	
k = knots (nodes)	y = Northing
RA3 = three-year rainfall anomaly	

Model output

Table S7. Best-fit generalised additive model explaining Autumn Persistent Green on Cape YorkPeninsula (2001-2018).

Parameter		Vegetation tr	ends		Full model			
Formula		А				В		
Family		Binomial				Gaussia	an	
Link function		Logit				Identity	ink	
Adjusted r^2		0 376				0 586		
Deviance explained (%)		37.6				58.6		
Parametric coefficients	Estimate	59.0	+	n	Estimato	50.0	+	n
(Intercept)	18 72	5 18	2 221	0.0013	10.63	0.277	70.85	0,000
(intercept)	10.72	5.10	5.221	0.0015	19.05	0.277	70.85	0.0000
	Year interac	tions (basis typ	pe = factor	smooth) as	fixed effects			
		Veg	etation ty	pe				
Eucalypt woodland	-	-	-	-	-27.99	0.220	-127.46	0.0000
Floodplain forest	-	-	-	-	-31.32	0.238	-131.91	0.0000
Teatree woodland	-	-	-	-	-34.89	0.218	-159.91	0.0000
Grassland	-	-	-	-	-46.22	0.227	-203.76	0.0000
Other vegetation	-	-	-	-	-27.56	0.218	-126.32	0.0000
	Othe	r fixed effects	(basis type	= factor sm	nooth)			
		Previous	-vear fire	season	•			
FDS	-	-	-	-	-16 56	0 439	-37 74	0 0000
IDS	_	_	_	_	-12 20	0.455	-42 69	0.0000
205		Graziv	na land ter	nure	12.20	0.200	42.05	0.0000
Yes	_	-	-	-	-11 94	0 178	-67 20	0 0000
105	Ve	aetation type	– fire seas	on interacti	ions	0.170	07.20	0.0000
Fucalypt woodland EDS burnt	-	-	-	-	15 30	0 462	33 10	0 0000
Eucalypt woodland LDS burnt	-	-	-	-	11 92	0.298	40.03	0.0000
Floodplain forest EDS burnt	_	_	-	-	11.32	0.473	23.84	0.0000
Floodplain forest LDS burnt	_	-		_	7 5/13	0.297	25.36	0.0000
Teatree woodland EDS burnt	_	_	_	_	10.80	0.463	23.30	0.0000
Teatree woodland LDS burnt	_	-		_	7 813	0.405	26.45	0.0000
Grassland EDS burnt		_	_	_	12 92	0.468	20.45	0.0000
Grassland LDS burnt	_	_		_	9 / / 9	0.408	27.55	0.0000
Other vegetation EDS burnt	-	-	-	-	10 59	0.300	21.00	0.0000
Other vegetation LDS burnt	-	-	-	-	10.58	0.481	21.90	0.0000
Other vegetation LDS burnt	Veneta	tion type - ar	- nzina land	tonuro into	practions	0.501	52.04	0.0000
Fucalynt woodland	-	-	-	-	7 017	0 201	3/1 97	0 0000
on Grazing land					7.017	0.201	54.97	0.0000
Floodplain forest		_	_	_	7 456	0.218	2/1/	0 0000
on Grazing land					7.450	0.218	54.14	0.0000
Teatree woodland	_	-		_	12 56	0 197	63 75	0 0000
on Grazing land					12.50	0.157	05.75	0.0000
Grassland on Grazing land	_	_	_	_	15 10	0 208	72 71	0 0000
Other vegetation	_	-		_	4 17	0.203	20.58	0.0000
on Grazing land					4.17	0.205	20.50	0.0000
	Ap	proximate siar	nificance o	f smooth te	rms			
	Effective d.f.	Reference	F	D	Effective	Reference	F	p
		d.f.		r.	d.f.	d.f.		•
s(Year, Vegetation type)	67.02	107	2,798	0.0000	84.54	1	83.54	0.0000
s(Average rainfall)	-	-	-	-	1.000	1	1.001	0.0000
s(three-year rainfall anomaly)	-	-	-	-	0.975	1	0.974	0.0000
s(y,x)	-	-	-	-	1.000	1	1.000	0.7700
		Analysis of	deviance	tests (X ²)				
Residual	d.	f.	Devia	ance	d.	f.	Devia	ince
	497,	115	85,73	5,273	497,	074	56,873	3,165
d.f.				40).6			
Deviance				28,86	2,107			
p	0.0000							