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Abstract 

Nonlinear modifications in the refractive indices of quasicircular electromagnetic waves, 
propagating obliquely in a cold homogeneous magnetised plasma in the presence of the Corio lis 
force of rotation, have been theoretically investigated. Some interesting properties are found 
to occur, which depend on the gyrofrequency, rotational frequency and the amplitudes of the 
waves. The characteristic variations of the refractive indices of the left and right circularly 
polarised waves, for different values of the gyrofrequency and rotational frequency, are shown 
graphically. The stop-bands, which are located for both the waves in the presence of the 
Coriolis force, are discussed. The stability criteria of the waves interacting with a plasma are 
also investigated. The results obtained are more general than those reported previously. 

1. Introduction 

Nonlinear effects of the interaction, of propagating waves with a magnetised 
plasma including the Coriolis force aspect of rotating plasmas are interesting 
and important, both in laboratory experiments and for astrophysical plasmas. 
Chandrasekhar (1953a, 1953b, 1953c) and Lehnert (1954, 1955, 1962, 1971) 
explored the effects of Coriolis force on propagating waves, particularly in the 
study of cosmic phenomena. Several authors (Chandrasekhar 1961; Bhatia 1967, 
1969a, 1969b; Bandyopadhaya 1972; Engels and Verheest 1975; Tandon and Bajaj 
1966; Das et ai. 1984) have developed different aspects of the mathematical theory 
of wave propagation in rotating plasmas. Uberoi and Das (1970) considered 
the effects of rotation on waves propagating in a plasma in the linearised 
approximation. They studied the cutoffs and resonances of the waves for various 
physical situations. Later, Horton et ai. (1984, 1986) and Paul (1985) observed 
the effects of nonlinearity in some of these problems of wave-plasma interactions. 

Sur et ai. (1988) investigated the influence of the rotation on the group travel 
time and the induced magnetic field, and particularly for solar pulses emerging 
from the sun's interior to its surface. However, they did not consider the influence 
of the nonlinearity in the refractive indices of the waves at the resonances and 
cutoffs, or in the shift of wave parameters. It appears that the problems of the 
nonlinear interaction of circularly polarised waves with a magnetised plasma have 
not yet been exhaustively studied. However, several such nonlinear aspects have 
been investigated by Max and Perkins (1972), Steiger and Woods (1972), Max 
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(1973a, 1973b), Goldstein and Salu (1973), Lee and Lerche (1978, 1979, 1980), 
Stenflo (1976, 1980), Chakraborty et aZ. (1986, 1987), Paul et aZ. (1989), Paul 
(1990) and others. Recently, Paul et aZ. (1992) and Kashyapi et al. (1992) 
considered nonlinear effects on the propagation of a wave in a magnetised 
rotating plasma, including the variation of the nonlinear refractive indices with 
the variation of the wave amplitude and rotational frequency. In the present 
paper the variation of nonlinear refractive indices, particularly at the cutoffs and 
resonances, and the stability of these waves have been reconsidered. It is found 
that a wave of power ,:::,1013 W m-2 becomes unstable in the presence of Coriolis 
force in the plasma. 

2. Dispersion Relations 

We assume that the electrons in the plasma are mobile but that the ions 
are immobile and maintain the macroscopic charge neutrality. The plasma is 
cold, homogeneous and collisionless. Also, we assume that the electromagnetic 
wave propagates at an angle B with the ambient uniform static magnetic field 
H 0 = (0,0, H 0) and angular velocity fl = (0,0, D), so that the propagation 
vector can be taken as k = (ksinB, 0, kcosB). Although rotation generates both 
the Coriolis force and the centrifugal force, only the Coriolis force is taken 
into consideration here to avoid mathematical complexity. Since the rotational 
frequency is small in astrophysical plasmas, the influence of the centrifugal force 
is negligible. The equivalent magnetic fields of the electrons and ions, due to 
the presence of the Coriolis force of rotation, are different (Lehnert 1962; Uberoi 
and Das 1970; Kashyapi et aZ. 1992). 

For circularly polarised electromagnetic waves propagating through a magnetised 
rotating plasma we obtain (Kashyapi et aZ. 1992) the first-order dispersion relations 

(1) 

The nonlinear dispersion relations for the first harmonic part, correct up to third 
order in the electric field, are 

2 _ w;e a;w;e cos2BIre(ckor:) (Ck+ Ck_) 
n± - 1 - =F 2 2 2 + ---

W(W±Ire) Wp(W -Ire) W - Ire W+Ire 

(2) 

Here, wPe = [4Ire2ne(0) /me]1/2, Ire = De - 2D, De = leHo/mecl, a e = ea/mewc, 
w~ = w~e - 4w2; me, ne, Ve and -e are the mass, number density, velocity and 
charge, respectively, of the electrons; c is the velocity of light, k± are the 
wavenumbers of the left circularly polarised (LCP) and right circularly polarised 
(RCP) waves respectively, W is the wave frequency, and a is the amplitude of 
the wave. Hence n± = k±c/w are the refractive indices for the LCP and RCP 
waves, respectively. 
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The relations (2) indicate that the refractive indices (n~) of the LCP and RCP 
waves depend on the rotational frequency D, gyrofrequency De, the dimensionless 
wave amplitude a e , the wave frequency w, the plasma frequency wpe , etc. It is 
clear that n+ and n_ depend on a e . The effects due to the influence of these 
factors on the refractive indices are discussed below. 

(2a) Variation with Angle of Propagation (0) 

Equation (2) can be written in the form 

n? = !(n~ + n=-) 

(3) 

Equation (3) shows that 0, the angle between the direction of wave propagation 
and the static magnetic field, affects the nonlinear behaviour of the refractive 
indices. When the wave propagates along the magnetic field (i.e. 0 = 0), the 
refractive indices are maximised, but for wave propagation perpendicular to the 
magnetic field (i.e. 0 = 7f /2), the refractive indices are minimised. Fig. 1 shows 
the variation of n2 for different values of the angle of propagation 0, when 
2D/w < 1 and De/w < 1. For Fig. 1 we have assumed that (wpe /w)2 = 0·6, 
a~ = 0·3 and De/w = 0·2. 

(2b) Variation with Plasma Density (Dv) 

The nonlinear refractive indices of the wave depend on the plasma density. 
From Fig. 1 we see that refractive indices sharply decrease with an increase in 
the plasma density when 2D/w < 1, De/w = 0·2, e = 30° and a~ = 0·3. 

(2c) Variation with Wave Amplitude 

In Fig. 1 the variation of .n2 with the wave amplitude a e is also shown. It is 
seen that an increase of a e results in an increase of n2 ; this increase is significant 
when 2D/w ~ 1. 

(2d) Analysis of the Stop-band 

The wave does not propogate at the cutoff frequencies, where k± = 0, and 
resonances occur when k± ---+ 00. Hence the waves exhibit a stop-band, i.e. a 
band of frequencies for which the waves do not propagate. For frequencies within 
this band, the wave number is imaginary. Uberoi and Das (1970) derived the 
linear dispersion relations for the LCP and RCP waves and showed the existence 
of the cutoffs and resonances for waves in a cold plasma in the presence of a 
Coriolis force. Later, Sur et al. (1989) investigated the propagation of ion-acoustic 
whistlers in the ionosphere, considering the effect of negative ions, and obtained 
the expressions for the cutoff and resonance frequencies. 

In this section, we examine the effect of nonlinearity on the cutoff and resonance 
frequencies of obliquely propagating waves in a rotating plasma. These quantities 
are affected by the Coriolis force; in some cases new stop-bands may be formed. In 
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Fig.1. Variation of the square of the refractive index n2 [=(n~+n:')/21 with (i) the square 
of the amplitude a~ of the EM wave when B = 30°, (ii) the angle of propagation B when 
a~ = 0·3, and (iii) the plasma density Dv when B = 30°, a~ = 0·3. For all cases flc/w = 0·2, 
2fl/w < 1. 

Figs 2 and 3 the stop-bands for the LCP and RCP waves are shown for different 
values of the rotational frequency 2f2/w, gyrofrequency f2e /w, and angle of 
propagation e. In these figures the solid curves indicate the variations of the 
refractive indices of the obliquely propagating LCP (n+) and RCP (n_) waves for 
e = 45°, and the dashed curves represent the waves propagating along the direction 
of the magnetic field (Le. e = 0°). In Fig. 2a we see that n~ decreases sharply with 
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Fig. 2a. Variation of the square of the refractive index n~ with the angular frequency of 

rotation 2D/w for the LCP wave, for various values of Dc/w :; 1 (see curve labels) and with 

(wPe /W)2 = 0·6, a~ = 0·1. Full curves, () = 45°; dashed curves, () = 0°. 

an increase in rotational frequency 2S1 /w. The cutoff point (k+ = 0) of the 

LCP wave occurs at 2S1/w = 1·1, when Sle/w = 0·2. The resonance (k+ -+ 00) 

is found at 2S1 / W = 1· 2 for the same value of the gyrofrequency. So, for the 

width of the stop-band (6) we have the inequality 1·1 ::::; 6 ::::; 1· 2, for Sle/w = 0.2. 

Similarly, 1·3::::;6::::;1·4, for Sle/w=0·4 and 1·5::::;6::::;1·6, for Sle/w=0.6. 

In Fig. 2b the variations of n2 + are shown for different values of Sle/w. Here, 

we see that n 2 + rapidly increases with an increase in Sle/w. For values of 

2S1 /w = 1· 4, 1· 6 and 1· 8, the widths of the stop-bands of the LCP waves are given 

by the inequalities 0·4::::; 6::::; 0·5,0·6::::; 6::::; 0·7 and 0·8::::; 6::::; O·g, respectively. 
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Fig. 2b. Variation of the square of the refractive index nt with the electron-cyclotron 
frequency flc/w for the LCP wave, for various values of 2fl/w :::: 1 (see curve labels) and with 
(wPe/w)2 = 0·6, a~ = 0·1. Full curves, e = 45°; dashed curves, e = 0°. 

From Fig. 3a it can be observed that n~ increases sharply with increasing 
rotational frequency 2fl /w for any value of CXe and for B < 900 • We find that 
the RCP wave would have a stop-band of width 0·2::::: {j::::: 0·3, for fle/w = 1'2, 
0·4::::: {j::::: 0·5, for fle/w = 1·4, 0·6::::: {j::::: 0·7, for fle/w = 1·6, 0·8::::: {j::::: 0.9, 
for fle/w = 1· 8. Similarly, Fig. 3b shows that the widths of the stop-bands for the 
RCP waves are 1 . 1 ::::: {j ::::: 1·2, 1· 3 ::::: {j ::::: 1· 4 and 1· 5 ::::: {j ::::: 1·6, for 2fl / w = 0 . 2, 
0·4 and 0·6, respectively. In each figure the refractive index changes slightly 
for obliquely propagating waves, though the nature of its variation remains the 
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Fig. 3a_ Variation of the square of the refractive index n:" with the angular frequency of 
rotation 2r1/w for the Rep wave, for various values of r1c/w 2: 1 (see curve labels) and with 
(r1Pe/w? = 0-6, Q~ = a-I. Full curves, () = 45°; dashed curves, () = 0°_ 

same as for waves propagating along the direction of the magnetic field, but 
the widths of the stop-band for the LCP and RCP waves decrease slightly_ In 
Figs 1-3 we note that the location of the stop-bands of the LCP and RCP waves 
changes for different values of 2fl/w and fle/w, but in each case the width of 
the stop-band is the same, i.e_ {j = 0·1 (in units of 2fl/w). 

From the above discussions it is clear that the characteristic variations of 
cutoffs and resonances with the rotation introduces new stop-bands due to the 
nonlinear interaction of the waves and the plasma. Note that different widths 
of the stop-bands are obtained in comparison to those obtained by Uberoi and 
Das (1970). In this connection it should be mentioned that the relative locations 
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Fig. 3b. Variation of the square of the refractive index n:' with the electron-cyclotron 
frequency [}c/w for the RCP wave, for various values of 2[}/w ::; 1 (see curve labels) and with 
(wpe/w)2 = 0'6, Q~ = 0·1. Full curves, () = 45°; dashed curves, () = 0°. 

of the cutoffs and resonances may be interchanged for extraordinary waves 
propagating at right angles to the magnetic field in the presence of Coriolis force 
in a cold plasma (Uberoi and Das 1970). 

3. Nonlinearly Induced Instability of the Wave 

We have investigated the instability of the LCP and RCP waves including 
the effect of Coriolis force by finding the imagninary part of w or k from 
(2), because for instability either 1m w > 0 or 1m k > O. In temporal evolution 
problems, complex values of ware sought from the dispersion relation to locate the 
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instability. In spatial evolution problems, we find the solution of the dispersion 
relation (2) for k. It is difficult to obtain the solution of (2) for w, but the 
solution for k is easily found. We consider the nonlinear dispersion relation (2) 
for spatial evolution in the following form: 

(4) 

and 

(5) 

In equation (4) we insert the value of k_ from (1), and obtain for k+ the 
quadratic equation 

(6) 

Similarly, using the value of k+ from (1) in (5), for L we obtain 

(7) 

where 
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For the LCP wave we now substitute k+ = kr+ +iki+ in equation (6), and for the 
RCP wave we write k_ = kL +ikL in equation (7). Then the imaginary and 
real parts are 

(8) 

(9) 

(10) 
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[ 
2 2 2e (2 2 ) 2] CXe Wp COS W + 7f e W - Wp Wp 

X e W e -1+ e 

2w~(w - 7fe)2 W + 7fe w(w - 7fe ) 

(11) 

Relations (8)-(11) show that the amplitude-dependent terms cause the instability 
of the wave, because if CXe = 0, then from (8) and (10) it is seen that kr+ = 0 = kL • 

But relations (9) and (11) show that 

k. - ± i (1 _ w;e ) 1/2 
1+ - w(w + 7fe ) , 

(12) 

( 
W2) 1/2 

k- = ± i 1 _ Pe . 
L ()' W W - 7fe 

(13) 

hence k+ and k_ become real, which indicates that the waves are neither 
amplified nor attenuated. These results also follow from the dispersion relation 
(1) of the linearised approximation. Evidently, the LCP and RCP waves become 
unstable due to nonlinear interaction with the plasma (i.e. ki+ is real) when the 
dimensionless wave amplitude satisfies the condition 

CX2 > [1 ± (7fe/w) - (wp jw)2] [1 ± (7fe/w)] [1 + (7fe /w)]2 
e (7fe /w) [(wp jw)2 + 2] cos2e (14) 

This is the limiting value of the amplitudes of the LCP and RCP waves for 
instability in a rotating magnetised plasma. This value of CXe may be less than or 
greater than unity for any value of the rotational frequency and gyrofrequency. 
Moreover, expression (14) determines the actual limit of intensity of the LCP and 
RCP waves for occurrence of the instability at different values of the magnetic 
field. The limiting value of the power of unstable waves is obtained from the 
relation (Chakraborty 1977) (1 erg == 10-7 J) 

(15) 

In the following, the critical values of the dimensionless amplitude/power of 
the unstable electromagnetic waves are estimated for different values of De/w, 
(w p jw)2 and 2D/w, and these are furnished in Tables 1 and 2. In a cold plasma 
having an electron density ~1012 cm -3, the powers of the unstable electromagnetic 
waves are (i) 5·1x1013 W m-2 , (ii) 6·7x1013 W m-2 , and (iii) 9·95xl013 W m-2 
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Table 1. Limiting value of the power of the unstable wave 

() 7re/w 2Jl/w Jle/w etc P (1013 W m- 2 ) 

0° 0·45 0·70 0·25 0·87 5·1 
0·40 0·60 0·20 0·95 6·2 
0·35 0·50 0·15 1·00 6·7 

0° 0·37 0·65 0·28 1·01 6·72 
0·36 0·62 0·26 1·02 6·95 
0·35 0·57 0·22 1·03 7·20 

0° 0·34 0·63 0·29 1·04 7·23 
0·30 0·64 0·34 1·11 8·24 
0·28 0·68 0·38 1·20 9·95 

Table 2. Limiting value of the static magnetic field for the unstable wave 

() 

0·35 
0·36 
0·34 

2Jl/w 

0·50 
0·57 
0·63 

0·15 
0·22 
0·29 

1·00 
1·02 
1·04 

Ho (104 G) 

1·0 
1·7 
2·3 

when the wave frequency, plasma frequency and gyrofrequency satisfy the 
following conditions: (i) 7re /w = 0·45, (ii) 7re /w = 0·35, (iii) 7re /w = 0·28, and (i) 
(wpe /w)2 = 0·1, (ii) (wpe /w)2 = 0·20, (iii) (w pelw)2 = 0·25, respectively. Similar 
analysis yields the limiting value of the static magnetic field (H 0) for which 
a particular electromagnetic (EM) wave will be unstable in a rotating plasma. 
We see that an EM wave having power ,:::::1013 W m- 2 and frequency ,:::::1010 Hz 
becomes unstable in a plasma having density ':::::1012 cm-3 and rotational frequency 
108 rad S-1 when the static magnetic field is greater than 102 G. For these values 
of the field parameters in the plasma, the gyro frequency De is less than the wave 
frequency and greater than the angular frequency of rotation (i.e. D < De < w). 

Paul (1990) considered the case of De > w in a non-rotating relativistic plasma 
and obtained the limiting value of the powers of electromagnetic (EM) waves 
in a laser-induced plasma. However, comparing the results of Paul (1990) with 
ours we see that the limiting value of the power of the unstable wave is much 
higher in our case. This may be due to the effect of the Coriolis force in the 
plasma, or to the low value of the static magnetic field when De < w. Here the 
effect of relativistic variation of mass of the plasma particles is not considered. 
To get an idea of the role of the Coriolis force of rotation on the stability of the 
wave, we have plotted the attenuation of the LCP and RCP waves in Fig. 4. It 
is seen that the attenuation of the LCP wave decreases with an increase in the 
value of 2D /w, but for the RCP wave the attenuation increases sharply with an 
increase in the rotational frequency. In an astrophysical plasma the condition 
for stability of the wave in the presence of Coriolis force may be satisfied. Then 
it may become easy to explain some astrophysical phenomena, e.g. mass loss, 
certain explosions, heating processes, etc. 

Parker (1965), Dessler (1967), Barnes (1969) and others have suggested that 
a non-thermal mechanism is the source of heating of the plasma in the solar 
corona. The dissipation of magnetohydrodynamic (MHD) waves may also be the 
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Fig. 4. Variation of the attenuation ki± of the LCP and RCP waves with the angular frequency 
of rotation 2fl/w, for various values of flc/w < 1 (see labels) and with (wPe/w)2 = 0·55, 
w = 5xl06 rad s-l, a~ = 0·1, () = 45°. 

source of heating of astrophysical plasmas (Sturrock 1966). MHD waves may be 
dissipated in a collision-dominated plasma due to electrical resistivity, viscosity 
or the formation of shock waves (Schatzman and Suffrin 1967; Jordan 1968), 
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but Barnes (1967, 1968) showed that the damping of collisionless hydromagnetic 
waves is the cause of heating of the solar corona. Later, Bandyopadhaya (1972) 
suggested that astrophysical objects may be heated by damping of MHD waves 
inside rotating stellar bodies. 

It is well known that huge amounts of ionised and non-ionised gases are emitted 
from (i) the nuclei of galaxies (Rougoor and Oort 1960; Woltjer 1965; Oort 1971; 
Bandyopadhaya 1974; Bandyopadhaya et al. 1974), (ii) the sun (Zheleznyakov 
1964; Harrision 1986; Low 1986; Kahler 1987; Hundhansen 1988), (iii) Be-stars 
(Underhill 1960; Weymann 1963; Strittmatter et al. 1970), (iv) supergiants 
(Deutsch 1966; Morton 1967a, b, 1969), and (v) Wolf-Rayet stars (Basu and 
Bandyopadhaya 1971), as well as many other hot astrophysical bodies. Various 
authors have suggested different mechanisms to explain the mass loss phenomenon 
(Rubra and Cowling 1959; Strittmatter et al. 1970; Basu and Bandyopadhaya 
1971; Paul 1977), but no theory has been found to be quite conclusive. However, 
several authors (Kippenhahn 1970; Strittmatter et al. 1970) believe that rotational 
motion makes an important contribution to the ejection of mass from stars and 
other astrophysical objects. A part of the rotational energy is transformed into 
turbulent energy by some agency (e.g. magnetic field), which in turn dissipates 
as heat, thereby heating the overlying gas and, as a result, mass is ejected from 
these objects. 

4. Concluding Remarks 

Nonlinear interaction of waves and plasmas gives rise to self-action effects, 
e.g. self-focusing, self-trapping, wavenumber shift/frequency shift, precessional 
rot atio.n , etc. The effect of a shift of the wavenumber and frequency is expected 
to occur when the field intensity is not too high or too low. When the intensity 
is very high the refractive index increases locally to a considerable value and 
the nonlinear effects considered above are destroyed by the consequent bending 
of the ray-direction. In the very-low-intensity limit, the linearised solution holds 
good and all the nonlinear effects vanish automatically. Kaw and Dawson (1970) 
showed that the threshold power of an EM wave for the occurrence of self-action 
phenomena in a dense plasma (electron density ~1018 cm-3 ) is 1023 Wm-2 . 

A dc magnetic field is generated by the circular motion of the plasma 
electrons in the plasma (the inverse Faraday effect, IFE). Deschamps et al. (1970) 
experimentally observed that a uniform magnetisation of the order of 10-2 G is 
generated in a plasma by a pulsed microwave signal having frequency 3000 MHz 
and a repetition frequency of 10 Hz. In the present investigation the power 
of the EM wave is below the threshold power obtained by Kaw and Dawson 
(1970), so our results will have physical significance for laboratory experiments 
and space plasmas. As the induced magnetisation observed by Deschamps et al. 
(1970) is very low in comparison with the static magnetic field used in numerical 
calculations, the IFE is neglected in the present analysis. 

The instability of the EM wave discussed here is not due to self-focusing or 
filamentation; it is a modulational instability. Paul (1990) showed that, due to 
self-action effects, EM waves having power much below that for the occurrence 
of nonlinear phenomena are unstable in a strongly magnetised, relativistic dense 
plasma (Ho = 108 G, P = 1015_1019 Wm-2 , No = 1020 cm-3 ). Here the limiting 
power of the unstable wave is assumed to be 1013 W m-2 , H 0 = 104 G, the plasma 
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density No = 1012 cm-3 and rotational velocity 5x108 rads- 1 . Astrophysical 
bodies such as magnetic stars, pulsars, the Crab nebula, etc., have rotational 
frequencies very close to their gyrofrequencies, so for these systems the modulational 
instability of the wave will be very significant. It is well known that hot stars, 
including the sun, emit different types of waves having different frequencies and 
powers. Moreover, such objects have magnetic fields of different strengths. Not 
all the waves emitted from a star will be modulationally unstable: only if the 
conditions for the power, frequency and gyrofrequency causing the instability are 
satisfied, will a given wave be unstable. 

In recent years, several authors have studied the effects of nonlinearity on 
wave propagation in relativistic plasmas (Lerche 1967, 1969; Kaw and Dawson 
1970; Winkles and Eldridge 1972; Stenflo et al. 1983; Kennel and Pellat 1976; 
Shih 1978; Stenflo and Tsinstadze 1979; Hora 1981; Tsytovich and Stenflo 1983; 
Shukla et al. 1986). It has been found that relativistic mass correction effects 
for electron and ion motions are significant in the shift of wave parameters 
(Sluijter and Montgomery 1965; Tidman and Stainer 1965; Boyd 1967; Das 
1968, 1971; Chandra 1974), precessional rotation (Arons and Max 1974; Lai and 
Wonnacott 1976; Chakraborty 1977; Khan and Chakraborty 1979; Bhattacharyya 
and Chakraborty 1979, 1982; Bhattacharyya 1983; Chakraborty et al. 1984; 
Chakraborty and Paul 1984), the IFE (Steiger and Woods 1972), solitons and 
shocks (Das and Paul 1985; Nejoh 1987, 1988; Das et al. 1988; Roy Chowdhury 
et al. 1988, 1989a,b, 1990; Salauddin 1990; Chakraborty et al. 1992) and other 
nonlincar phenomena (Das and Sihi 1977; Shih 1978) in plasma. It has been 
observed that an EM wave will not penetrate a dense plasma unless the velocity 
of the electrons is relativistic, and it becomes imperative to consider the mass 
variation of the electron. During solar bursts and in the evolution of stars and 
pulsar radiation, ionised particles are ejected from these astrophysical bodies with 
very high velocities (close to the velocity of light: Zheleznyakov 1964; Kaplan 
and Tsytovich 1979; Snow 1979; Sreenivason 1979; ter Haar and Tsytovich 1981; 
Low 1986; Harrision 1986; Kahler 1987). It is therefore expected that more 
interesting results will be obtained from analysis of the stability of waves in a 
rotating plasma, if relativistic effects are taken into account. This would provide 
further ideas for understanding the peculiar and unknown characteristics of waves 
in astrophysical plasmas as well as in laboratory experiments. 
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