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Abstract 

Much of the information on electronic, atomic, nuclear and particle physics is obtained 
in scattering experiments. The inverse scattering problem is to deduce the interaction 
between the colliding particles, or what their constitution is, from the observed data. Inverse 
scattering techniques at fixed energy which have lent themselves to practical application are 
reviewed. Some recent applications, in particular to electron-atom scattering, are discussed. 
New results for e-He scattering at 30 eV are presented. 

1. Introduction 

Much of what we know about electronic, atomic, nuclear and particle physics 
is information gathered from scattering experiments. Inferring the structure 
of particles involved in the experiment or, as is often the case, the nature of 
the interaction between the particles, is an inverse problem. The quantum 
mechanical inverse scattering problem is one of long standing. The recent 
text by Chadan and Sabatier (1989) summarises the general status of the field 
admirably. Here we confine ourselves to the inverse problem at fixed energy 
as opposed to the idea of constructing the underlying potential from a single 
phase shift, given for all energies. The latter approach is intrinsically unnatural 
and unsatisfactory since this information is not available at all energies and 
the assumed nonrelativistic kinematics are no longer valid at high energies. 
We initially mention those fixed energy inversion methods which have lent 
themselves to practical applications and then consider two of these in more 
detail. 

The Newton-Sabatier method, reviewed by Chadan and Sabatier (1989), was 
applied to practical problems by Coudray (1977), with later modifications by 
Miinchow and Scheid (1980) and applications to heavy ion scattering by May 
et al. (1984). 

The inverse problem at fixed energy can also be solved by discretisation 
of the Schrodinger equation using finite difference methods. Early work here 
was due to Case and Kac (1973) and Case (1973). Subsequent developments 
are due to Zacharev and co-workers (1977) and Hooshyar et al. (1982, 1984). 
Hooshyar et al. have applied their method to n-16 0 and n-4°Ca scattering at low 
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energies and to nucleon-nucleon scattering. Numerical and other difficulties are 
encountered at high energies. Inversion techniques, based initially on the fixed 
energy analogue of the Bargmann (1949) potentials, have been developed and 
applied with considerable success by Lipperheide, Fiedeldey and co-workers 
(Lipperheide and Fiedeldey 1978, 1981; Burger et al. 1983; Naidoo et al. 1984; 
Leeb et al. 1985; Lipperheide et al. 1985). 

The semiclassical WKB approach to fixed energy inversion was discussed 
in detail by Vollmer (1969) with application to atom-atom scattering data. 
Kujawski (1973) applied semiclassical inversion to real data obtained from 
scattering of 104 MeV oc particles by 12C and 90Zr. Inversion of molecular 
scattering data using semiclassical methods was reviewed by Buck (1974). 
This approach requires a smooth interpolation of the phase shifts and that 
used in the Lipperheide-Fiedeldey quantal inversion method has been used 
with considerable success for WKB inversion-for example Fiedeldey et al. 
(1984) and Allen and Burger (1984). Ambiguities associated with semiclassical 
analysis have been discussed by Cuer (1979). 

Other inversion methods at fixed energy which have led to numerical 
methods are those due to Malyarov et al. (1975), the 'peeling' inversion method 
due to Shapiro and Gerber (1976) and the variational approach of Kermode et 
al. (1986). 

As emphasised by Chadan and Sabatier (1989) the solution of an inverse 
scattering problem involves the consideration of all possible solutions. Aspects 
of the iU-posedness of the problem, and methods which allow us to select 
physically meaningful solutions (regularisation) are crucial, as has been reviewed 
by Sabatier (1985) and Turchin (1985). 

In the next section we outline two of the fixed energy inversion methods 
which have been particularly successful in terms of applications, namely the 
Lipperheide-Fiedeldey and WKB inversion techniques. 

2. Fixed Energy Inversion 

(a) Upperheide-Fiedeldey Quantal Inversion 

The simplest of the methods developed and applied by Lipperheide, Fiedeldey 
and co-workers (Lipperheide and Fiedeldey 1978; Burger et al. 1983) is based 
on the following representation for the scattering function: 

N 71. 2 - f3~ 
Srat(A) = n 71. 2 _ oc~' 

n=l 
(1) 

where 71. = l+~ and the OCn and f3n are complex parameters (for the case of a 
real potential f3n = oc~). Using this representation we can interpolate between 
2N phase shifts at the physical I values by means of N pairs of parameters 
{ocn,f3n}. However, the conditions Imoc~ > 0, Imf3~ < 0 must be satisfied if one 
is to obtain a regular potential. 

The potential V(r) is determined iteratively: 

V(r) = VN(r) , (2) 
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where 

Vn(r) = Vn-l (r) + v<n)(r), n=I,2, ... ,N, 

2 2 2 d {I ( 1 )}. 
V(n)(r) = y(Pn-OCn)dr y {LJtl(rn--{L~.l(rW 
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(3) 

(4) 

The {L~(rW are the logarithmic derivatives of the lost solutions {ff(rW to 
the potential V n(r). In the case where 1m oc~ < 0 or 1m P~ > 0 we must use a 
nonrational scattering function of the form 

II 
"..(0) - "..(0) (0) _ (0) (J"(O) IIIII (J"(O) - (J"(O) "..(0) _ "..(0) II 
v 13. v am (J" A (J" IXm 13. 13. IXm v A v IXm 

Snonrat(,\) 11.2 _ 2 - ,2 _ 2 (0) 11.2 _ OC 2 - A 2 _ OC2 ' 
I-'n OCm 1\ OCm eTA I-'n m m 

(5) 

with (J"~O) = exp{-i rr (A-~)}. In this case the {L~(rW are the logarithmic derivatives 
of the regular solutions cp~(r). Fitting phase shifts to the nonrational scattering 
function directly is not always straightforward. However, if I 1m OCn I. 11m Pn I 
are sufficiently large (approximately ~2) then Snonrat(A) = Srat(,\) for real A, so 
that the fitting can be done via equation 0), which is straightforward. The 
two schemes can be combined by writing S(,\) as a product of rational and 
nonrational scattering functions (Naidoo et al. 1984). 

The error in the (complex) potential is given by (Leeb et al. 1985) 

(.1V(r»)2 = ([.1V(r)]2) = ~ oV(r) oV(r) I 
e L 0 ~ ~m 

n,m=l an vam· ' a 
(6) 

where II = {an} is the set of all the real and imaginary parts of the 2N complex 
parameters OCn and Pn, and Enm is an error matrix. For a real potential the 
sum runs to 2N. 

(b) WKB Inversion 

The phase shifts in the WKB approximation are given in terms of the 
quasipotential Q«(J") by (Vollmer 1969): 

8(A) = illnS(A) = 2.foo Q«(J") d(J" 
2£ A«(J"2_A2)~' 

(7) 

where £ is the centre-of-mass energy. Conversely, the quasipotential is given 
in terms of the phase shift 8(,\) by 

4£ 1 d foo 8(,\) dA dA. 
Q«(J") = IT a- d(J" U (A 2 _ (J"2) ~ (8) 

The potential V(p) is related to Q«(J") by 

V(p) = £[1 - exp{Q«(J")/£}], (9) 
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where 

p = crexp[Q(o")f2E] , (10) 

with p = kyo Using the representation equation (1), Q(cr) can be found analytically 
(Fiedeldey et al. 1984) as well as the partial derivatives in equation (7) (Allen 
1986). 
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Fig. 1. (a) Inverted potentials obtained by quantum mechanical inversion for e-He scattering 
at 19 eV (solid curve) and 2 eV (dashed curve). 

(b) Comparison of the absorptive parts VA(r) of the potential obtained by inversion from 
the MEP model, the SEPnapA2 potential, and the QFSM potential for e-He scattering at 200 eV. 

(e) Local exchange potentials for e-He scattering obtained by inversion which are exact 
within the static exchange approximation at 19 eV (dotted curve), 30 eV (dash-double dot), 
50 eV (dash-dot), 100 eV (dashed), and 200 eV (solid). 

(d) Local exchange potential for e-He scattering at 30 eV (solid curve) obtained by inversion 
compared with the exchange potential of Furness and McCarthy (1973) at the same energy 
(dashed curve). 
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3. Applications to Electron-Atom Scattering 

Inverse scattering techniques were first applied to electron-atom scattering 
by Burger et al. (1983) who used both fully quantal Lipperheide-Fiedeldey 
and semiclassical WKB inversion methods to obtain local potentials for e-He 
scattering for incident energies of 2 and 19 eV. The quantum mechanical 
results are shown in Fig. 1 a. These potentials, obtained without any a priori 
assumptions about their analytic form, are in agreement with our physical 
expectations both in the tail and at short range. The incoming electron sees 
a polarisation potential at large distances and the Coulomb potential due 
to the nuclear protons at small distances (see Burger et al. 1983 for these 
comparisons). There is a weak energy dependence of the local potential 
at intermediate distances which is a manifestation of the nonlocal exchange 
interaction. 

Semiclassical WKB inversion of phase shifts for e-He scattering at 200 and 
400 eV, calculated using matrix effective potentials (MEPs) by Thirumalai et 
al. (1982), was subsequently carried out by Allen and Burger (1984). The 
absorptive parts of these equivalent local potentials (ELPs) were then compared 
with several competing local models for absorption such as the quasi-free 
scattering model (QFSM) of Staszewska et al. (1983). This comparison at 200 eV 
is shown in Fig. 1 b where it is seen that the MEP is considerably shallower 
than the other models but that the minima in all the potentials occur at 
about the same distance from the nucleus. The energy dependence of the 
absorptive potential manifested itself in a deeper potential at 400 eV than at 
200 eV and the radius for preferential absorption was closer to the nucleus. 
These results are reasonable physically and agree qualitatively with the QFSM 
absorption potentials of Staszewska et al. (1983). 

The quantum mechanical inverse scattering method was used by Holler and 
Allen (1986) to find local exchange potentials, exact within the context of the 
static exchange model, for intermediate energy electron-atom scattering. The 
potentials and their energy dependence are shown in Fig. 1 c and a comparison 
with the semiclassical exchange potential of Furness and McCarthy (1973) is 
made in Fig. 1 d. 

Further developments to the quantum· mechanical inversion by Leeb et al. 
(1985) allowed a rigorous analysis of the confidence intervals on the potential, 
taking into account the errors on the measured differential cross section. As 
shown by Allen (1986), within the WKB approximation, much of this err.or 
analysis can be done analytically with considerable saving in computational 
complexity and time. This formalism was employed to show, from the e-He 
data of Andrick and Bitsch (1975) at 19 eV, that the data imply that the 
polarisation potential behaves like -cx/r4 for large r, in agreement with the 
adiabatic polarisation potential. This WKB technique, coupled to the methods 
of statistical regularisation, was employed by Allen and McCarthy (1987) to 
extract, in a rigorous way, the local potential with error bars for e-He scattering 
at 19 eV, as shown in Fig. 2a. In obtaining this result, statistical regularisation 
was applied, giving equal weighting to the variational phase shifts of Nesbet 
(1979) (the Philipps condition). The long standing question of the behaviour 
of the (local) polarisation potential at short· distances was addressed in this 
paper. The polarisation potential at short distances, shown in Fig. 2b, was 
found to be less attractive than the full adiabatic polarisation potential, as 
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Fig. 2. (a) Potential for e-He scattering obtained by inversion at 19 eV when the Philipps 
condition is satisfied. The dashed curve shows the Coulomb potential. 

(b) Polarisation potential for e-He scattering at 19 eV obtained by subtracting out the local 
static exchange potential from Holler and Allen (1986) (see Fig. 1 c) from the potential shown 
in (a). The dashed curves indicate the confidence intervals. The dash-dot curve indicates 
the adiabatic polarisation potential -ex/2r4 (ex = 1 ·38 a.u.). 

Fig. 3. Phase-equivalent local potential Vp(r) for electron elastic scattering from the hydrogen 
Is, 2p system plotted as Vp/Va-l for comparison with the adiabatic potential at 50 and 
200 eV. 

3 
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Fig. 4. (a) Fit to smoothed e-He elastic differential cross section data at 30 eV using a 
scattering function of the form given by equation (1). (The Philipps condition is satisfied-see 
text.) 

(b) Real part of potential obtained from the data in (a) by inversion, showing error bars. 
(e) Imaginary part of potential obtained from the data in (a) by inversion, showing error 

bars. 
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discussed by McEachran and Stauffer (1983). In fact it exhibits a behaviour at 
short distances remarkably similar to the extended polarisation potential of 
Callaway et al. (1968). 

The workjust discussed prompted a theoretical investigation of the polarisation 
potential for dipole excitations by Allen et al. (1988). Here inversion techniques 
were employed to construct phase-equivalent local potentials to the nonlocal 
polarisation potential-see Fig. 3 where the phase-equivalent local polarisation 
potential for hydrogen is compared with the local adiabatic potential -ajr4 
at 50 and 200 eV. 

4. Application to e-He Scattering at 30 eV 

In this section we present results for potentials obtained by inversion from 
elastic e-He scattering data at 30 eV. The starting point is the elastic differential 
cross section data of Brunger et al. (1990), normalised to and supplemented 
by the data of Register et al. (1980) in the angular range 100-150·. The 
parametrised phase shift analysis has been carried out as described by Leeb 
et al. (1985) and Allen and McCarthy (1987) using the parametrisation given 
by equation (1) and applying statistical regularisation. The data have been 
smoothed a priori using the technique described in Allen et al. (1987). In 
practice this meant that three data points were moved by 0·25 of a degree to 
eliminate nonstatistical errors (within the estimated errors on the angles). This 
'smoothed' data set gave X2 = 1 ·253. Statistical regularisation was applied, using 
the SEPnapA3 model [static, exchange, polarisation, nonadiabatic, perturbative 
(polarisation potential), A3 model for absorption] of Thirumalai et al. (1982) 
as a priori data. This gave a final X2 = 1 . 76 (the Philipps condition being 
satisfied). The experimental points and the fit for this X2 value are shown in 
Fig. 4a. 

Table 1. Experimental phase shifts for e-He scattering at 30 eV obtained using the 
parametrised and regularised phase shift analysis described in the text 

o 
1 
2 

Re(o,) 

1·600±0·038 
0·380±0·012 
0·090±0·004 

A Thirumalai et al. (1982). 

Im(o,) 

0·038±0·042 
0·017±0·012 
0·002±0·006 

SEPnapA3A 

1·521+iO·013 
0·308+iO·029 
o ·068+i 0 ·010 

Table 2. Experimental integral elastic and absorptive cross sections and total cross 
sections compared with previously obtained experimental and theoretical values 

Cross Present Register et al. Kennerly and de Heer and 
section work (1980) Bonham (1978) Jansen (1977) 

Qel 7·86±0·O9 7· 54 7·98 
Qabs 0·41±4·31 0·81 
Qtot 8·26±4·25 8·43 8·79 

The phase shifts obtained, together with the associated statistical errors, 
are shown in Table 1, where they are compared with the SEPnapA3 model. 
The elastic, absorptive and total cross sections are given in Table 2 where 
they are compared with previous results. The elastic cross section is well 



______ ~ ______ ~._,~_. m~. ____ ·_=·"~·,~,~,~u,~,. __ ~"._ ..... , .. ,_ ... ~~ .. ___ . 

Quantum Mechanical Inverse Scattering Problem 239 

determined by the scattering data, while the absorptive cross section, which 
is expected to be small at this energy, is not. 

The interaction potential obtained by regularised inversion from the data 
is shown in Figs 4b and 4c. The real part of the potential is well determined 
by the data. However, the error bars on the relatively shallow absorptive part 
of the potential become large inside about one Bohr radius. Measurements 
of the differential cross section with smaller statistical uncertainties, over as 
wide a range of scattering angles as possible and at smaller intervals in the 
angle, would significantly improve these error bars (and also the large error 
bar on the absorptive cross section). 

The inversion yields a local potential, whilst the underlying interaction is of 
course nonlocal. However, information on the nonlocality could be obtained 
from experiments done over a small energy range by examining the energy 
dependence of the local potential, which in principle allows one to extract 
information on the nonlocality (Fiedeldey et al. 1985, 1986). 

5. Conclusions 

Inverse scattering methods at fixed energy leading to numerical results 
have been reviewed with two of the more successful approaches (the 
Lipperheide-Fiedeldey and semiclassical WKB approaches) receiving particular 
attention. Phase shift analysis coupled with these inverse scattering techniques 
provides a rigorous way to extract physical information directly from experimental 
data. Statistical regularisation methods allow us to do this in a way consistent 
with our a priori knowledge of the problem. 

We have discussed some previous applications of inverse scattering methods 
to e-He scattering and presented here for the first time a potential (with error 
bars) for e-He scattering at 30 eV extracted from scattering data in a rigorous 
way. 
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