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Abstract 

The standard resul ts of the quark model rely on nonrelativistic descriptions of the wavefunctions 
of the quarks in the hadron. However, simple uncertainty principle considerations show that 
the momenta of the quarks are comparable to their (constituent) masses, so that relativistic 
dynamics must be used in the description of the hadronic structure. In this paper I describe 
a number of new and old results which illustrate relativistic effects on the quark structure 
of hardons, and which employ the method of light cone quantisation to handle relativity. 

1. Introduction 

One of the early successes of the quark model was the calculation by 
de Rujula et al. (1975) of the magnetic moment of the hadrons in terms of 
the magnetic moments of the quarks. Each quark is given its Dirac magnetic 
moment 

Qje 
fli = 2mi (1) 

and the proton magnetic moment, say, is computed from the standard definition 

flp={pll LfliO"il pl}. 
i 

Using the well known spin-isospin wavefunction of the proton 

I p l}= J! I 2UtUtd! -(Ut u! -u!ut)dt ), 

one obtains the now classical result 

e MN 
flp = 2MN mq' 

assuming that the non strange quarks have the same mass mq . 

* Dedicated to Professor Ian McCarthy on the occasion of his sixtieth birthday. 

(2) 

(3) 

(4) 
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Similarly one obtains the result 

e ( 2MN) 
Iln = 2MN - 3mq . (5) 

These results of de Rujula et al. (1975) represent one of the early and great 
triumphs of the quark model. The value predicted for the ratio Iln/Ilp, -~, is 
very close to the observed value, -0·685, and using the experimental value 
for the proton magnetic moment one obtains the quark mass as mq = 336 MeV. 

However, in the same paper, de Rujula et al. computed the L\ - N mass 
splitting from the colour hyperfine interaction, a potential proportional to o(r). 
In this way one obtains the result that 

Mil - MN oc 1 1/1(0) 12 DC l/R~. (6) 

In this way the L\ - N mass difference gives an estimate of the proton radius 
of Rp '" 0·5 fm. Other estimates may be obtained from electron scattering 
(Rp '" 0·8 fm), and nonleptonic decays of the hyperons (Rp '" 0·4 fm). A 
summary of the various estimates of the proton radius parameter was given in 
the paper of Thomas and McKellar (1984). Through the uncertainty principle 
they correspond to mean quark momenta of 400, 250 and 500 MeV respectively. 

The very paper containing one of the great results of the nonrelativistic 
quark model contains the information that the quarks are relativistic. Clearly 
the quark model must be extended to encompass relativistic quarks. This 
leads one into deep questions-the problem of a pair of relativistic particles 
interacting through a potential has no unique formulation, as one may have 
expected because p '" m implies there is sufficient energy to create pairs. 
Strictly speaking, the relativistic two-body problem does not exist-one must 
deal through field theory with an N-body problem, where N is indeterminate. 
Even the apparently simple case of the electron-positron bound states contain 
interesting physics when studied closely enough. 

In this paper I concentrate on one particular approach to the problem, 
through light cone quantisation, discussing first the two-body problem and 
then the dynamical field theory approach. 

2. Light Cone Quantisation 

The possibility of quantising a relativistic system using light cone coordinates 
was introduced by Dirac (1949) in a remarkable paper which, incidently, contains 
a throw-away line remarking that there is no obvious reason why P and T 
should be conserved in nature. Dirac identified the basic elements of a 
quantised theory as the generators pil and Mllv of the Poincare group, and 
asserted that the aim of any quanti sed theory is to obtain a representation 
of the commutation relations which define the Poincare group: 

[PIl,PV] = 0, (7) 

[MIlV,PP] = _gllPpV + gVPPIl , (8) 

[Mil V ,MW] = _gllP MVO" + g vp MilO" _ gW MPv m + GVO" MPIl . (9) 
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These commutation relations are taken at equal times. It was Dirac's 
key insight to separate the role of time as a parameter of the underlying 
space-time from its role as parametrising the evolution generated by the 
Hamiltonian operator, and consequently being the parameter held constant in 
the commutation relations. Dirac therefore investigated alternative quantisation 
schemes. Before describing the light cone quantisation he introduced, I first 
review the usual quantisation scheme. 

In instant dynamics the system is characterised by the coordinates qi and 
momenta Pi of the particles at an instant t = TO. Consider first the case of 
just one particle. The Poincare generators divide into two groups: 

• Simple generators are those that generate transformations which leave 
the instant t = TO invariant. These comprise the 3-momenta 

pi =pi, (10) 

and the angular momenta 

Mij = qi~ _ tlpi. (11) 

• Hamiltonian generators are those which transform the instant t = TO. 

These include the Hamiltonian 

pO = [p2 +m2]t, (12) 

and the boost operators 

1 . 
MOi = [p2 +m2]2q'. (13) 

It is the simple generators which are additive when one considers a many­
particle system, whereas the Hamiltonian generators for the composite system 
are not additive. If one introduces interactions between the particles, then 
these interactions modify the Hamiltonian generators in a way which we do 
not know how to define. 

In light cone dynamics, introduced by Dirac, instead of concentrating on 
those generators which preserve the instant t = TO, one pays attention to those 
generators which preserve the light cone, t-z="-o. First, recall that the light 
cone components of any vector All are defined by' 

A±=.JHAo±A3 ], Ai =Ai, for i= 1,2, (14) 

so that now vectors are represented by the components (A+,A-, Al,A2), the 
non-vanishing components of the metric tensor are 

g+_ = g_+ = 1, gll = g22 = -1 , (15) 

* Some authors omit the .Ji, with consequent alterations to the metric tensor, covariant 
components, etc. 
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and the covariant components of the vector are (A+ =A-, A_ =A+, Al = -AI, A2 = 
-A2). 

In this case the generators again divide into simple and Hamiltonian 
generators. 

• The simple generators are now 

pi=pi, P- =p-, 

MI2 =qIp2 _q2pl, 

Mi- = qip-, W-=q+p-. 

• The Hamiltonian generators in the light cone dynamics are 

2 p+ = Pl. +m2 
p-

.22 
M'+ = qi P 1. + m p_ _q+pi. 

(16,17) 

(18) 

(19,20) 

(21) 

(22) 

In this case the construction of many-particle dynamics is just as difficult, but 
Dirac, and many people since him, have been struck by the analogy between 
equation (21) for P+ in the light cone dynamics and the Hamiltonian operator 
in nonrelativistic quantum mechanics. Moreover, no square roots appear in 
the generators. This has given hope that there may be a simpler construction 
of many-particle dynamics in the light cone form than in the instant form-as 
we see in the next section, this hope is realised in part. 

To illustrate, consider the case of three free particles. The appropriate 
relativistic generalisation of the Jacobi coordinates for the three-particle system 
are the coordinates P-,Pl.,I1,~,Ql. and ql. which are related to the simple 
generators P(a)- and P(a) 1. , with a = 1,2,3 labelling the particles, by 

p(1)- = ~11P- , 

p(2)- = (I - ~)I1P- , 

p(3)- = (I -11)P- , 

P(1)l. = ql. + ~Ql. + ~I1P 1., 

P(2)1. = - ql. + (1 - ~)Ql. + (I - ~)I1P 1., 

P(3)1. = - Ql. + (I -11)P 1. . 

In terms of the variables the 'Hamiltonian' P+ is given by 

p+ 1 2 2 
= 2P- (P 1. + Mo), 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 
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where 

Q 2 M2 2 
M2 = -L + ~ + ..!!2L 

o 1](1-1]) 1] 1-1]' 
(30) 

2 2 2 
M2 _ P-L m1 m2 

12 - ~(1-~) + T + 1 - ~. (31) 

This separates the total momentum (P+,P-, P -L) from the internal variables which 
are contained in M6. It is then natural to make the simple ansatz that the 
wavefunction describing the relative motion is a function only of M6, cp(M6). 
In performing integrals over the internal· variables the volume element is 

dT= _1_ d 2q-L d~ d2 QJ. d1] 
(2rr)6 2~(l -~) 21](1 -1]) . 

3. Light Cone Wavefunctions and Baryon Electroweak Moments 

(32) 

The calculaton of the anomalous magnetic moments of the hadrons using 
the light cone method was pioneered by Berestetskii and Terent'ev (1977), and 
elaborated by Aznauryan and Ter-Isaakyan (1980) and Tupper et al. (1988). 
This work shows how to correct the calculation of de Rujula et al. (1975) for 
the relativistic effects which motivated this discussion. Costella and McKellar 
(1991) have extended these results to other electroweak moments, in particular 
the anomalous magnet dipole moments, the electric dipole moments, the 
anapole moments, and gA/gV. An interesting relation is obtained between the 
relativistic correction to these parameters. In this section I describe these 
results. 

In the light cone coordinates a convenient choice of Dirac matrices is 

yO=(~ ~), y3=(~ -01 ), 

yi = i~k (~ _:k) ,j,k= 1,2, yS = (0-3 0) . 
o -0-3 

(33,34) 

(35,36) 

With this representation of the gamma matrices, the positive energy free 
particle spinor is 

1 ( ~ ) u(p) = 1 • 

(2J2 p_)"2 (2p_)-1 (m - i P -L • t-L .0--L)cpA 
(37) 

Here cpA is a Pauli-type two-dimensional spinor, and p -L • t-L .0--L is a scalar product 
of the two-dimensional transverse vectors p -L and 0--L and the two-dimensional 
alternating tensor t-L. 

The first step in the straightforward, but complex, task of computing the 
matrix elements of the quark currents between hadronic states, is to obtain a 
representation of the hadronic states in terms of the light cone representation 
of the Dirac spinors. The prescription for these states is that they are obtained 
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by a Melosh (1974) transformation .a of 5U(6) wavefunctions of the type quoted 
in equation (3). The details are given in Terent'ev and Berestetskii (1976), 
Terent'ev (1976) and Berestetskii and Terent'ev (1977). Formally, the same 
matrix elements are obtained by transforming the Dirac operators, e.g. 

aIJ. =.a(T 1. .a-I. (38) 

The transformation operator .a is a product of factors like 

u = cos ()( + i (T 1. € H1. sin ()( (39) 

and it implements the mlxmg of orbital and intrinsic angular momentum 
characteristic of relativistic effects. I note in passing that Tupper (personal 
communication 1990) has shown that the Melosh transformation leads to a 
violation of the Pati-Woo theorem in the calculation of the matrix elements of 
the weak Hamiltonian between hadronic states, simply because of this mixing. 
This provides an excellent example of the way in which relativistic effects 
are able to introduce qualitative changes in results. Costella (1990) has given 
a pedagogical account of the manipulations necessary to obtain the matrix 
elements. 

In principle the procedure is simple. One starts with a sum of quark 
currents of the form 

" ·11 Jil = L,J(a) , 
a 

jta) = q( 0.0 yll + 2~a crJlvkv +Da Y5 (Tllvkv +Aa[yllk2 - yVkvkll])q 

(40) 

(41) 

(here 0.0, Ka, Da, and Aa are the charge, anomalous magnetic moment, electric 
dipole moment, and anapole moment of the a-quark), transform it by the 
Melosh transformation and evaluate its matrix elements between hadronic 
states, 

{Hfl Jill Hi> = ur(Qhyll + 2~h crJlVkv+DhY5(TIlVkv+Ah[yllk2_yvkvkll])U;, (42) 

to identify Qh, Kh, Dh, and Ah, the charge, anomalous magnetic moment, 
electric dipole moment, and anapole moment of the hadron h. 

In practice the analytic calculations are rather lengthy. When they are done, 
the results divide into two classes: 

• the contribution to the anomalous hadron magnetic moment from the 
Dirac moments of the quarks, considered by Tupper et al. (1988), and 

• the contribution of the non-Dirac moments of the quarks to the 
corresponding moments of the hadrons, considered by Costella (1990) 
and Costella and McKellar (1991). 
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In the first case the final result is that the anomalous magnetic moment of 
the nucleon is given by 

K = f dT 1 cf>~~~) 12 [4T3 + (~ -1])(2T3 - i )1]-1] 

21]0 -1])M6 + 1]mq Mo - iQi 
x---=--=----=,.--:..:~~~~-=--~= 

Qi + [mq + 0 _1])MO]2 
(43) 

In equation (43) the internal wavefunction cf>(Mo) is often taken to be a simple 
gaussian function with a width ex such that ex-I is proportional to the radius 
of the hadron. On simple dimensional grounds we see that, as mq -+ 0, ex 
is the only dimensional parameter remaining in the problem, and thus that 
K oc ex-I oc Rh. Contrast this to the bag model result that for the total magnetic 
moment of the hadron J1 oc Rh. The Drell-Hearn sum rule in fact requires that 
K oc Rh, giving an argument in favour of the lightcone wavefunction technique 
over the bag model. 

Unfortunately, the numerical results obtained by Tupper et al. (1988) show 
that in the simple gaussian wavefunction model it is not possible simultaneously 
to obtain a good fit to the anomalous magnetic moments of the octet baryons. 
Some physics has been left out-a better account of the confinement effects, 
meson cloud effects and quark anomalous moments have all been proposed 
as possible cures of the discrepancies, but it would take me too far from my 
theme to discuss these effects here. 

In the second case, the contribution of the quark moments to the corresponding 
hadron moments, I quote the results for the contribution of the quark electric 
dipole moments to electric dipole moment of the neutron. I choose the neutron 
because the electric dipole moment of the neutron has been extensively 
investigated experimentally and theoretically, as has been reviewed by Ramsey 
(1990) and He et al. (1989). The result is 

Dn = ~ZI(4Dd -Du), (44) 

where 

Q2 ) 
ZI=f dTIcf>(Mo)1 2 (1- Qi+[mq+t1-1])Mo]2 . (45) 

In the nonrelativistic limit (mq -+ 00), we have ZI -+ 1 glVIng the standard 
nonrelativistic result for the contribution of the dipole moment of the quarks 
to that of the neutron (see e.g. He et al. 1989). In the extreme relativistic 
limit (mq-+O), we have ZI-+i. For values of mq and ex used by Tupper et al. 
(988) in their calculation of the hadron magnetic moments, the correction 
to the nonrelativistic result is of order of a few per cent, indicating that 
relativistic effects do not play the same large role in this calculation that 
they played in the magnetic moment calculation. The relativistic correction to 
the contribution of the quark anomalous moments to the hadron anomalous 
moments also introduces this same factor ZI (Aznauryan and Ter-Isaakyan 
1980), which is not surprising when one notes that Y5 (T/lV oc E/lVPT (T pT. 
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More interesting is the fact that the same integral appears when one 
calculates the relativistic correction to the ratio gA/gy, 

gA/gy = %(1- 2Z1). (46) 

This permits the determination of an empirical value of the relativistic correction 
factor Zl, 

1( _ 39A )"",0.12. Zl ="2 1 5gy (47) 

We obtain the same relation between the relativistic correction to gA/gy and 
that to Dn in the bag model and a number of other models (Costella and 
McKellar 1990), and conjecture that it may be a general relationship. 

4. Dynamics and Light Cone Field Theory 

Lepage and Brodsky (1980) and others (see the review by Namyslowski 
1985) have developed the Feynman rules for the quantisation of fields in the 
light cone coordinates. The great advantage of the light cone field theory is 
realised when one compares it with the instant form of field theory. In the 
instant form, we are familiar with the existence of vacuum fluctuations in 
which particle-antiparticle pairs are created from the vacuum. This is possible 
because the 4-momenta in the instant form are conserved at each vertex, 
and there is no difficulty in satisfying the equation PI + P2 = O. However, 
the light front form is similar to 'old fashioned' perturbation theory in that 
(p-,p1,p2) is conserved at the vertices, and p+ is then determined from the 
mass shell condition (21). The momentum component p- is pOSitive, and it 
is thus impossible to satisfy the equation pi + P2 = 0, so there can be no 
vacuum fluctuations into particle-antiparticle pairs. This permits a considerable 
simplification of the calculations in light cone field theory. 

There is however a complication in the theory, which is illustrated by the 
Dirac equation in light cone coordinates: 

(iy-o- +iy+o+ - iy101 - iy202 - m)(/J = O. (48) 

The light cone evolution is described by 0+ = 0_ = %x-, and thus yOY-(/J is 
not a dynamical component of the Dirac field. Instead it is determined from 
the dynamical field Y°y+"(/J using the Dirac equation. The existence of these 
non-dynamical components of the Dirac, Maxwell and gluon fields leads to a 
proliferation of contact-type interaction terms in the Feynman rules. Here I 
will not give a complete listing of these, but illustrate the situation by giving 
the example of electron-electron scattering. In the instant form of QED, with 
covariant quantisation, there is just one Feynman diagram, illustrated in Fig. 1. 
Here, the virtual photon 4-momentum, qJl, is determined by energy-momentum 
conservation, so that qJl =.ef -.er. The final result is the well known amplitude 

T~ = _e2 U(.ef) yJlu(.ej)"ii(kf) YJl u(kj) . 
fi q2 +i€ 

(49) 
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~q~~ 
kj 

If 

kf 

Fig. 1. Feynman graph for electron-electron scattering by exchange of a virtual, covariant, 
photon. 

~ 
+ ~ + / 

Fig. 2. Graphs for electron-electron scattering in the light cone quanti sed field theory. The 
first graph is the contact term, and the second and third represent exchange of transverse 
photons. 

This result is gauge independent because of the conservation of the electron 
currents, 

qIlU(.ef);)/IlU(.ej) = qIlU(kf)yIlU(kj) = O. (50) 

In the light cone form, the three graphs of Fig. 2 all contribute. The first 
graph is a contact term, with the value (in the null gauge A- = 0) 

",,(1) 111111 v 
1 fi = e2u(.ef)YIl u(.ej) u(kr)yv u(kj) (Jr)2 . (51) 

The 4-momentum qll appearing in this equation is defined by conservation of 
light cone 3-momentum at the vertices, 

q-,l,2 = (.ej -.ef)-,l,2 , 

and by the mass-shell condition for the photon 

,r =qJ./q-, 

and I1Il is a unit 4-vector defined by 

11+,-,1,2 = (1,0,0,0). 

(52) 

(53) 

(54) 
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The contact contribution to the e-e- scattering amplitude given by equation 
(51) is analogous to the contribution of the Coulomb interaction in the Coulomb 
gauge (see e.g. Mandl and Shaw 1984). The analogy is very close as the origin 
of the Coulomb term and the contact term in the light cone calculation is 
the fact that one of the components of the Maxwell field-AD in the Coulomb 
gauge, A+ in the light cone calculation-are not dynamical variables, but are 
determined from the dynamical fields by the Maxwell equations. 

The second and third diagrams in Fig. 2 represent the exchange of transverse 
photons. They sum to gi'"" the contribution 

1 
~2)+(3) = e2U"(.€fh'll u(.€j)U(kfh'v u(kj) 7rq+ _ qi + IE 

x (_ gllV + ,tzt + fJvqll) 
(q-)2 . (55) 

It is a straightforward algebraic exercise to show that the sum of all three 
graphs of Fig. 2 is 

1 ~1)+(2)+(3) = e2u('€fh'll u('€j) U(kfh'v u(kj) q2 + i E 

x (_ gllV + fJllqV + fJv qll) 
(q-)2 . 

Now, the use of equation (50) demonstrates that 

TF _ .....(1)+(2)+(3) 
fi-lfi ' 

(56) 

(57) 

and thus that the light cone method and the Feynman method give the same 
results in this simple case. 

This approach to e-e- scattering immediately generalises, of course, to e+e­
scattering and the kernel for the Bethe-Salpeter equation for positronium. It 
is well known (e.g. Itzykson and Zuber 1980) that the Bethe-Salpeter equation 
is solved starting from Fock's solution for the momentum space wavefunction 
of two particles interacting through a Coulomb potential. The light cone 
treatment suggests that the Bethe-Salpeter equation with the contact interaction 
of equation (51) as the kernel may be an alternative starting point. I leave 
you with that thought as an exercise for the reader (and the author). 
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