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Abstract 

Fourier methods for the determination of crystal structures were first suggested by Bragg in 
1929, and were then successfully used by Beevers and Lipson for determining the structure of 
CuS04.5H20 in 1934. It was necessary for methods of summation to be devised, and after some 
experimentation the Beevers-Lipson strips became established as the best device for the work. 
They enabled increasingly complicated structures to be derived, but ultimately more elaborate 
and automatic devices based on digital computers had to be introduced. At the same time, 
isomorphous-replacement, heavy-atom and direct methods were also developed and these have 
enabled structures of enormous complexity to be successfully determined. 

1. Early Ideas and Their Application to CuS04.5H20 

In the early 19308 we were both physics research students at Liverpool. One of the 
staff, R. W. Roberts, was anxious to extend the research work of the department and 
asked us to try our hands at crystal-structure determination, then in its early days. 
He knew nothing about the subject and neither did we, but we soon learned to take 
oscillation photographs of single crystals; we were, however, at a loss about what to 
do with them. 

As a result we asked for help from W. L. Bragg at Manchester, only 40 miles away. 
He was very encouraging, and introduced us to his staff, W. H. Taylor in particular. 
Taylor put us on the right lines and we soon worked out the two tetragonal crystal 
structures BeS04.4H20 and NiS04.6H20. These, we thought in our enthusiasm, 
were too easy, and we decided to try something more difficult, say copper sulfate 
pentahydrate (CuS04.5H20), which was triclinic. 

In fact, this project was too ambitious, as the crystal involved 33 parameters. By 
a stroke of luck, however, we recognized regularities in the intensities that allowed 
placement of the Cu and S atoms, but since little was then known about water of 
crystallization, and since five was an unusual number of water molecules, we could 
not make any further progress by packing considerations. 

One of us (C.A.B.) then suggested trying the Fourier method that Bragg (1929) had 
recently advocated. Bragg had tested the method on a known structure, diopside, but 
no one had used it for an unknown structure. There were, however, two difficulties: we 
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did not have quantitative measurements and we had no experience in summing two­
dimensional Fourier series, although from our mathematics lectures we had gained 
considerable experience in summing one-dimensional series. Two-dimensional work 
with about 90 terms was a different matter! 

The Manchester department came to our rescue for the first problem: we were 
allowed to use one of their historic ionization spectrometers and several weeks were 
spent making measurements. For economy we omitted the weaker reflexions. For the 
calculations, we had to devise our own methods, and this included using long strips 
of paper and carrying out the summations, which required a period of about a month. 

As it was necessary to know the signs of the F values, we used the regularities 
mentioned above which were, first, that nearly all the strong reflexions had h + k even 
and, secondly, that reflexions with k = 3, 4, 7 and 10 were, on the whole, stronger 
than the others. These regularities suggested, although they did not prove, that the 
Cu atoms lay on a C-face-centred lattice at points (0,0,0) and (4,~, 0), and that the 
parameters of the S atoms were 0·00 and 0.29; 0·29 multiplied by 3, 4, 7 or 10 gives 
close to a whole number. We then assumed that the signs of the F values were those 
given by the Cu and S atoms, in spite of the large number of oxygen atoms. 

The results exceeded our wildest hopes. The atoms were clearly defined, not 
perfectly round, but clear nevertheless. There was one small peak, which we called a 
ghost and which we could not account for, but we later found that it resulted from 
omitting the weaker reflexions. The Fourier synthesis is shown in Fig. 1. 

2. Development of the Fourier Strips 

For the calculations, we began very tentatively using only twenty of the lowest order 
reflexions and working out at first only a limited area of projection. The calculations 
were very tedious using the straightforward methods. In a structure with a centre 
of symmetry the quantities to be added together are of the type Fhkcos(hx+ ky), 
where x and yare coordinates in angular measure, hand k are the Miller indices of 
the planes, and Fhk is the experimental amplitude of the wave reflected by the (hk) 
plane. In the case of CuS04.5H20 there are about 90 planes involved in the c-axis 
projection. If the x and y axes are divided into, say, 60 parts, there are 60x30 = 

1800 points in the cell at which the summation is required. The immediately obvious 
procedure is to work out hx+ ky, find the cosine, multiply by the appropriate Fhk 
and add up all the 90 values at each of the 1800 points. Such long additions are 
exceedingly tedious, especially when carried out mentally, and there was naturally a 
strong motive to shorten the additions. On the morning of 4 December 1933 one of us 
(H.L.) suggested that the computation would be made very much easier by expanding 
cos(hx+ ky) into the well-known form cos hxcos ky -sin hxsin kyo Although this 
would seem at first glimpse to make matters worse, in that we now have two terms 
to add instead of one, it did in fact make the computation a great deal easier. For 
each value of h we could sum all the Fhk cos k y for all values of y, and later use this 
total as the coefficient for the cos hx values. For each value of h the summations only 
involve 2 k numbers instead of a number of the order of h times k. Furthermore, the 
symmetry of cos ky or cos hx is much higher than the symmetry of cos(hx+ ky) as 
these functions always have their symmetry points at the value hx or ky equal to 0, 
90° or 180°. By sub-totalling even and odd values of hand k, the range of x and y 
can always be reduced to only 90°; by adding and subtracting the subtotals the range 
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Fig. 1. Fourier synthesis for copper 
sulfate pentahydrate. [From Lipson 
and Cochran (1966), p. 207.] 

can be extended to 180°. The FhkcOS ky totals are then used as the coefficients for 
the cos hx totalling for each value x. Again the number of additions is small and 
symmetries can and must be used. A good deal of simple book-keeping is involved in 
the calculations, but this is well worth while in the interests of keeping the additions 
small. An entirely similar process is required for the sine term summations, and a 
final subtraction and addition of these terms for each value of (xy) will extend the 
range of one of the coordinates to the full value of 360°. 

The values of A cos hx and B sin hx can be printed out in tabular form and then 
cut into strips, so that the Fourier summation is simply the selection of appropriate 
strips which are laid down underneath each other and then added to give the various 
subtotals. Separate tables were used for each value of h, and each table has the value 
of x across a row and the value of A down a column. The table for h = 1 contains 
all the basic columns of numbers required. To obtain the tables for higher values of 
h, all that is required is a re-shuffling of the columns. Of course some of the columns 
have to be repeated many times. The details of ranges and intervals were dealt with 
in our early papers, starting with a note in the Philosophical Magazine fifty years 
ago (Beevers and Lipson 1934a; see also Beevers and Lipson 1934b and Lipson and 
Beevers 1936). For an example of the method, the reader is referred to Lipson and 
Cochran (1966). 
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We made the first set of tables from strips actually used in our research, filling in 
the gaps when the opportunity arose. [We still have an incomplete set written by one 
of us (H.L.) with some help from his mother.] Several people asked to be allowed to 
copy them and we therefore explored the possibility of having them printed; Professor 
Bragg was extremely encouraging and arranged for a loan of £200---then a large sum 
of money-from the University. The printed strips soon became popular and it was 
not long before the University loan was completely repaid, leaving a small profit for 
us. 

A second edition was conceived and designed by one of us (C.A.B.) at the University 
of Edinburgh. These had an interval of division of 3°, thus extending the range of 
application, and also included extra strips in case three-figure accuracy was required. 
The strips sold all over the world and were used over a period of more than 20 years 
before they became obsolescent. 

3. Heavy-atom and Isomorphous-replacement Methods 

The evaluation of Fourier synthesis maps is, as has been shown, entirely dependent 
upon a knowledge of the signs of the F values, or indeed in the more general case of 
their phase values. When a projection does not have a centre of symmetry at the origin 
the summation involves terms of the form Acos(hx+ ky) + Bsin(hx+ ky), where A 
and B are different parts of the structure factor. Here A is the 'real' part and B the 
'imaginary' part, so that A2 + B2 = F2. Only the total P value can be deduced from 
the observed X-ray intensities of reflection; the 'phase problem' is the distribution of 
the F value between the A and the B terms. In the days before anomalous scattering 
was understood there were no direct means of knowing the phase angle. If there is 
a centre of symmetry at the origin of a projection, such as for CuS04.5H20, the B 
term is zero, and then all that is needed is the sign of the A value. 

However, a heavy atom in the structure will have a predominating influence on 
the sign or on the phase, and if its position in the cell can be deduced it is possible to 
work out its contribution to the sign or phase, and hence the likely signs or phases 
of the total F value. These will then give a Fourier map which will not only yield 
the heavy-atom positions, but also some indication of the lighter atom positions. If 
these indications are used with care a series of approximations will give the complete 
structure. A centrosymmetrical projection is likely to give quicker results. In any case, 
a complete structure determination with two-dimensional maps in several projections 
is likely to need many Fourier calculations, and the Fourier strips proved most useful 
in carrying out these calculations. 

Isomorphous-replacement methods are an even more certain procedure in attaining 
a solution to an unknown structure by Fourier methods. There are many cases, 
especially in the field of inorganic chemistry, where a crystal is a member of a 
whole series of isomorphs, i.e. of compounds having an almost identical structure 
but with one atom different. Of course, a change of atom type will cause some 
change in size or in a re-arrangement of the atoms of the structure. However, the 
basic structure arrangement may be unchanged, and this can of course be seen in the 
relevant crystallography and in the general similarity of the X-ray reflexions. The 
main change, in such cases, is due to the alteration in the scattering factor of the 
atom concerned, and the change in the F values of the reflexions will give a clear 
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indication of the position of this atom in the unit cell. The position of the atom will 
in tum give the sign or phase of the F values. A particularly easy case is when the 
atom replaced is on a centre of symmetry at the origin. If the F value increases 
when a change is made from the lighter atom to the heavier, then theF is positive. 
A difficulty in this method is that a change of atom in a structure also produces a 
change in the absorption coefficient for the X rays, and this must be taken into account 
when reducing the observed intensities to F values. When using copper radiation a 
particularly good substitution is to go from K to Rb in the isomorphic substitutions; 
although this gives a useful change in scattering factor, it produces practically no 
change in absorption, as can be seen from the atomic-absorption tables. 

4. Competition with Robertson's Method 

The Fourier strip method developed had no serious competitor. Robertson (1936) 
made use of a much slower method, involving eventually one h = 1 table, from which 
values for other values of h would be selected by appropriate stencils. These tables 
had a three-figure accuracy, opposed to our two figures, but since in those days (and 
even now?) it was not possible to measure F values to better than a few per cent, this 
higher accuracy was not needed. 

Robertson's method involved recording the numbers that were shown by the sten­
cils, and then adding them with a calculator. With our method, the strips were placed 
in sequence and added mentally, and although not everyone liked this mental arith­
metic, our method soon became generally preferred. We were pleased to find on a 
visit to Robertson's laboratory in Glasgow that his students were using our methods 
in preference to his. 

5. Direct Methods 

Heavy-atom and isomorphous-replacement methods are all very well, but they 
depend on the ability to make appropriate compounds. It had, however, always been 
hoped that it might be possible to deduce a structure directly from its diffraction 
pattern; after all the eye can do this by receiving the diffraction pattern from an 
object and forming an image. 

The reason for the difference, however, is that the eye 'knows' the relative phases of 
the various parts of the diffraction pattern, whereas in X-ray diffraction patterns this 
information is lost. W. L. Bragg maintained that this made direct structure determina­
tion impossible. There was great excitement therefore when Harker and Kasper (1948) 
produced a crystal structure (BIOH14) purely from mathematical considerations! 

Once this had been done, others were encouraged to try further ideas. It was soon 
. realized that the Harker and Kasper method was not purely mathematical; it made 
use of the physical properties that the atomic arrangement must possess. Nevertheless, 
to contribute to this subject required a considerable degree of mathematical ability. 
Different groups took up the challenge (for example, Karle and Hauptman, Vand 
and Pepinsky, Cochran and Woolf son) and extended the methods to more and more 
complicated structures. These methods filled an important gap. They work best when 
all the atoms are about equal in size, and so organic compounds containing carbon, 
nitrogen and oxygen were particularly suitable for investigation. 

The most important name in the subject now is that of Woolfson. Germain and 
Woolf son (1968) described a method later known as MULTAN, which can be used 
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in three dimensions and for non-centrosymmetric structures, and which has had an 
enormous impact on problems of moderate (by protein standards!) complexity. For 
example, the structure of gramicidin (Hull et af. 1978), involving over 300 parameters, 
has been solved by this method; structures with over 400 parameters have also been 
solved, and 600 parameters does not seem impossible. 

Scale (A) 
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Fig. 2. Fourier synthesis for phthalocyanine. [From Lipson and Cochran (1966), p. 205.] 

6. Highlights 

The Fourier method opened the floodgates for further work. At first the method 
was used mainly for refining structures-finding the most accurate coordinates for 
known structures-but it soon demonstrated its greater power, as exemplified by the 
work on copper sulfate. To find the phases of the X-ray reflexions, one could use the 
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heavy-atom method or the isomorphous-replacement method, and both these devices 
were employed extensively. 

The most striking example of this work was that on phthalocyanine by Robertson 
and Woodward (1937). The molecule is planar and many different metal atoms can 
be inserted at the centre, which is a centre of symmetry in the crystal; with a metal 
as heavy as platinum all the phases must be zero and the structure emerges directly 
(see Fig. 2). 

(a) 

Fig. 3. Partial Fourier syntheses that led to the structure of penicillin: (a) rubidium benzyl 
penicillin and (b) sodium benzyl penicillin. [From Lipson and Cochran (1966), p. 217.] 

During the late 1930s, most work concentrated on organic compounds, but generally 
the work merely verified what the chemists already knew, albeit with greater accu­
racy. Sooner or later, however, some new results were bound to arise and one 
of the first projects of this sort was the structure of penicillin (Crowfoot et al. 
1949). Penicillin was of obvious importance clinically, but chemically it was rather 
strange. The chemists managed to attach monovalent atoms such as sodium, potas­
sium and rubidium to the molecule, but unfortunately the compounds were not 
isomorphous; the first was monoclinic, and the others orthorhombic. The results from 
the isomorphous-replacement method were not easy to interpret and sodium was not 
heavy enough to give clear results. However, two outstanding researchers, Dorothy 
Hodgkin of Oxford and Charles Bunn at 1.e.1. in Northwich, found enough similarity 
in the results (see Fig. 3) to enable the structure to be deduced. (It is now maintained 
by some that the chemists had found the structure just before the crystallographers, 
but certainly the race was extremely close!) 

From that point on, there seemed no limit to the complexity of structures that 
could be determined. The proteins, involving thousands of atoms, were now open to 
investigation. In 1960 Kendrew and Perutz produced the detailed atomic structure 
of myoglobin and haemoglobin (Perutz 1963), molecules involved in the capture 
and transport of oxygen. Soon after, Blake et al. (1965) produced the structure of 
lysozyme. This was the first structure for an enzyme, a class of chemicals which 
controls the rate of reactions in the body and which is necessary for life. 

All this work was made possible by the introduction of automatic recording 
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apparatus for the X-ray diffraction patterns and by the use of digital computers for the 
calculations, which made three-dimensional work commonplace. The Fourier strips 
were no longer needed. The main problems were of a chemical nature, for example, 
whether to produce either heavy-atom derivatives or isomorphous compounds. It 
turned out that the heavy atom need not be all that heavy relative to the rest of the 
atoms, as many of us had feared, even with thousands of other atoms present. (Perutz 
has described to us his feelings on seeing by eye that the changes in intensities could 
be detected in haemoglobin photographs when only a few Hg atoms are introduced 
into the molecule.) 

o c 

hi 

Fig. 4. Fourier synthesis for sporidesmin. [From Fridrichsons and Mathieson (1965).] 

In conclusion, we can only briefly mention some of the other important structures 
that have been worked out-vitamin B12, cholesterol and, in particular, insulin, with 
which the name of Hodgkin will always be associated (see Dodson et al. 1981). 
Australia was not left behind, as shown by the work of Mathieson on the structures of 
lanostenol, a constituent of wool wax (Curtis et al. 1952). The chemists were initially 
undecided between three different possibilities, and the Mathieson team was able to 
produce a definite answer by studying the iodine derivation C32H530 2I at -150·C. 
From Patterson projections the precise form of the molecule was found. Another 
important compound was sporidesmin, a chemical responsible for facial eczema in 
sheep. An adduct with CH2Br2(C1SH2006N3S2Cl.O.65CH2Br2) was studied by 
Fridrichsons and Mathieson (1965) and three-dimensional Patterson synthesis and 
Harker syntheses enabled the result shown in Fig. 4 to be derived. 

Fridrichsons and Mathieson (1967) also derived the structure of gliotoxin, again at 
- 150·C. This compound is related to sporidesmin, but the problem was made more 
difficult because the asymmetric unit contained two molecules of C13H1404N2S2. 
Thus 126 parameters were involved. Three-dimensional Patterson synthesis was used 
and the absolute configuration was also found by anomalous dispersion. 

Thus, the work of Mathieson and his colleagues has been greatly informative about 
the chemistry of a number of natural products of Australia, and the continent has 
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been fortunate to have a man of his stature able to direct this work. We like to think 
that the methods that we devised in 1934 have been ultimately of value in leading to 
solutions of problems of such complexity. 
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