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Abstract 

It is shown that low-temperature series expansions for lattice models in statistical mechanics can be 
obtained from a consideration of only connected strong subgraphs of the lattice. This general result 
is used as the basis of a linked-cluster form of the method of partial generating functions and also 
as the basis for extending the finite lattice method of series expansion to low-temperature series. 

1. Introduction 

The techniques of exact series expansions have been some of the most important 
means of investigating models exhibiting continuous phase transitions. Even though 
renormalization group techniques have provided a more flexible and unified approach 
to the study of critical phenomena, there are still a number of problems in which series 
expansions can prove useful. In many systems, series expansion results are used as 
the standard against which the results of different approximate realizations of renorm
alization group transformations are compared. One of the most useful forms of 
series expansion in lattice models is the high-density or low-temperature expansion 
(Domb 1974, Section IIB1). These series enable the critical point to be investigated 
either from the low-temperature regime or from the high-field regime. It is also possible 
to transform the series into high-temperature series (Domb 1974, Section IIB2). 

de Neef and Enting (1977) have pointed out that in recent years techniques of 
series expansion have, to an increasing degree, involved substituting algebraic com
plexity for combinatorial complexity. One reason for this trend appears to be the 
increasing use of digital computers at all stages of series derivation. Algebraic tech
niques are generally more easily implemented on digital computers than are direct 
combinatorial techniques. Another reason for using algebraic techniques is the sheer 
size of the numbers involved. In Ising model high-temperature susceptibility series, 
for example, successive coefficients grow roughly exponentially. These coefficients 
correspond to the numbers of embeddings of various classes of subgraphs of the 
lattice. If direct enumeration of embeddings is used then the amount of computer 
time must inevitably be determined by this exponential growth. It is, however, 
possible to obtain high-temperature susceptibility series by an algebraic transformation 
of enumerations of smaller classes of subgraph embeddings (Sykes 1961). This 
'counting theorem' represents probably the earliest of the algebraic techniques of 
series expansion. Other techniques making extensive use of algebraic manipulation 
have been described by Sykes et al. (1965, 1975), Wortis (1974) and de Neef and 
Enting (1977). Enting (1978b) gives a more extensive analysis of algebraic techniques 
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vis-a-vis combinatorial techniques, using the framework of general theories of compu
tational complexity. 

The present paper presents some new algebraic techniques which can be used to 
obtain low-temperature series expansions for lattice models. When examples are 

. given, the Ising model is considered so as not to obscure the discussion with details 
which are irrelevant to the general formalism. It must be emphasized that the tech
niques apply to many other models, that useful applications will be those considering 
more complicated models than the Ising model and that the gain from using algebraic 
techniques is likely to be greatest in these more complicated models. 

In Section 2 it is shown how low-temperature expansions can be expressed in a 
form involving only connected 'strong' (or section) subgraphs of the lattice. In 
particular the grouping properties, that is, the number of series terms which can be 
obtained from various sets of graphs, are discussed. Section 3 explores the application 
of these linked-cluster results to the method of partial generating functions (Sykes et 
al. 1965). In Section 4 resummations of the strong graph expansion are described, 
showing how it is possible to obtain low-temperature expansions for square lattice 
systems by combining the partition functions for finite rectangles. This extends the 
methods of de Neef and Enting (1977) and Enting and Baxter (1977) to low-temper
ature series. Because algebraic techniques are almost always implemented on digital 
computers, Section 5 is devoted to considering several technical computational simpli
fications which should make these series expansion techniques more efficient. One 
simplification which is used throughout this paper is that the partition function Z is 
expressed as an infinite product rather than using the conventional technique of 
expressing In Z as an infinite sum. The advantage of working with Z is that usually 
all the series coefficients are integers. 

2. Linked-cluster Expansions for Low-temperature Series 
The literature on series expansion techniques contains a number of results which 

immediately suggest the possibility of obtaining low-temperature series using only 
connected strong sub graphs of the lattice, but this technique does not appear to have 
been used in actual calculations. 

The combinatorial factors occurring in problems in lattice statistics are given in 
terms of the number of ways in which various graphs can be embedded in the graph 
which represents the crystal lattice. There are two classes of embeddings which are 
important in lattice statistics: weak embeddings which are one-to-one correspondences 
between the edges and vertices of the embedded graph and the crystal lattice such 
that the incidence relation is preserved; and strong embeddings which have the addi
tional constraint that if two vertices in the embedded graph map onto a pair of lattice 
vertices which have a common edge then the two vertices in the embedded graph must 
have a common edge. Conventionally a less precise terminology is used so that one 
speaks of strong (weak) subgraphs and the number of strong (weak) subgraphs rather 
than the number of strong (weak) embeddings of a subgraph. 

It is well known that, for Ising and related models, low-temperature expansions 
for the partition function Z can be expressed in terms of the partition functions of 
connected weak subgraphs (Sykes et al. 1966; Domb 1974, Section IIB3). (In practice 
it is In Z that is expressed as a sum of such contributions but this implies that Z can 
be expressed as a product.) An examination of the formalism in the light of the 
results of Sykes et al. (1966) shows that one could equally well obtain an expansion 
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in terms of partition functions of strong subgraphs. The argument below constitutes 
an independent proof ofthis assertion and has the two advantages that (1) the grouping 
properties, which determine the number of series terms obtained, appear explicitly 
and (2) by removing any reference to weak embeddings, the arguments can be easily 
extended to include multi site interactions such as triplet or four-spin interactions. 
The following proof of the existence of a connected strong graph expansion is written 
in terms of the Ising model and uses the Ising model variables p, = exp( - 2{3H) and 
u = exp( - 4{3J). The extension to other lattice models is indicated. 

The starting point of the proof is the expression for the reduced partition function 
A = ZjZ(T=O, H=oo) as 

AG = L uv(g) xe(g) , 

{gS; G} 
(1) 

where the set {g S G} is the set of strong subgraphs of G, v(g) is the number of 
vertices of g and e(g) is the number of edges of g. In terms of conventional Ising 
model variables, we have u = p,utq and x = u-t, where q is the lattice coordination 
number. In models such as the Potts (1952) model, x would be replaced by a function 
of u which would be obtained by summing over decorations of the subgraph g. In 
other systems, such as the spin-1 Ising model or the Ashkin and Teller (1943) model, 
this sum may also include higher powers of u. 

One now writes, for any graph G, 

AG = IT (1 + h(g) , 
{gS;G} 

(2) 

where AG is calculated with fixed boundary conditions; that is, we assume G lies 
within a lattice of coordination number q in which all sites outside G take on the 
minimum energy configuration. We need to show that the terms h(g) have three 
properties: 

(i) Equation (2) provides a consistent definition of h(g). 

(ii) h(g) = ° if g is disconnected. 
(iii) h(g) is at least of order uv(g). 

The first of these three properties is easy to prove: One simply defines h(g) by 

h(g) = -1 +Ag/ IT (l+h(g') , 
{g'cg} 

(3) 

so that h(g) is, for any graph g, explicitly defined in terms of graphs with a smaller 
number of vertices. 

For disconnected graphs with two connected components g and g' we have 

= IT (l+h(f) IT (1+h(f')" 
{fS;g} {J'S;g'} 

(4a) 

(4b) 

so that AgVg' is expressed exactly as a product over proper subgraphs and the formula 
(3) gives h(gug') = ° (condition (ii) above). Expression (4a) can be regarded as a 
definition of the term 'connected' in the context of a given lattice model. This definition 
will correspond to the normal graphical definition if the lattice is drawn so that there 
is an edge connecting any two sites which interact. 
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To prove the third property, we generalize the variable v so that, for a graph G 
with n sites, one has Vi' V2 , ... , Vn associated with vertices Vi' ... , Vn' Then 

(5) 

where £?l>(y) denotes terms proportional to y. 
Equation (5) follows immediately from the condition that all the A functions shall 

be calculated using fixed boundary conditions. If one works inductively and assumes 
that condition (iii) above is true for all subgraphs of G then 

TI (l+h(g) = ( TI (l+h(g))(l +Vi!(X'Vi)) 
{ge GJ {gS G/vil 

(6) 

In the final expression (6) the index i appears only once, so in fact one must have 

(7) 

Condition (iii) then follows by substituting equation (7) into the formula (3). 

3. Application to Method of Partial Generating Functions 

The method of partial generating functions (Sykes et al. 1965) equates the partition 
function of a lattice model to the partition function of a related model on a different 
lattice. If one takes a triangular lattice Ising model with nearest neighbour interactions, 
a field and a suitably chosen three-spin interaction then the partition function per site 
will be equal to the square of the partition function per site of a honeycomb Ising 
model. 

On a triangular lattice with N sites we consider the contributions of two subgraphs: 
a, a single vertex, there being N such subgraphs; and b, a single edge, there being 3N 
such subgraphs. All other connected subgraphs have three or more vertices, so that 
to order v2 

(8) 
with 

(9) 

where p, and u are the conventional Ising model variables and w is the Boltzmann 
weight associated with the three-site interaction. From equations (3) and (8) we have 

(ATR1)1/N ~ Alb)/A1a) (lOa) 

~ 1 +p,U3W3 +3p,2U5W4 _3p,2U6W6 +(JJ(p,3), (lOb) 

where (JJ(y) denotes terms of order y. 
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If one has a honeycomb lattice with 2N sites and different fields on each of its two 
triangular sublattices, with 1'/ and A being the expansion variables for the field and Z 

being the low-temperature expansion variable, then 

with 
p,U3W3 = A(z+1'/z2)3/(1 +1'/Z3)3, 

p,2U5W4 = A2(z+1'/z2t(z2+1'/z)/(1+1'/z3)5 , 

p,3U6W6 = A3(Z+1'/Z2)6(Z3 +1'/)/(1 +1'/Z3)7 . 

(lla) 

(lIb) 

(llc) 

(lId) 

In terms of series, the expression for ABC will be of order n in A if the expression for 
ATRl is of order n in p, but ABC will be given exactly as a function of 1'/. Following 
Sykes et al. (1965) we can use the fact that ABC has to be symmetric in 1'/ and A to fill 
in some of the missing coefficients. Thus 

At/t ~ (l + 1'/z3)[1 + A(Z + 1'/z2)3/(1 + 1'/Z3)3 + 3A 2(Z + 1'/Z2t(Z2 + 1'/z)/(1 + 1'/Z3)5 

-3A2(z+1'/z2)6/(1 +1'/Z3)6 + ... ] (12a) 

= 1 + tiz3 + k 3 + 1'/A(3z4 - 2z6) + (1'/A 2 + A1'/2)(3z5 - 6z 7 + 3z9) 

+A1'/3(Z6 - 6z8+ 9zl0 _4Zl2) +A21'/2(12z6 -39z8+42zl0 _15zl2) + .... (12b) 

The knowledge that the coefficient of A 31'/ will be equal to the coefficient of A1'/3 enables 
us to find all the terms of fourth order in the field variables, and setting A = 1'/ gives 

At/eN = 1 + 21'/Z3 + 1'/2(3z4 - 2z6) + 1'/3(6z5 -12z 7 + 6z9) 

+1'/4(l4z6 - 5lz8 + 60zl0 - 23zl2) + .... (13) 

This result can be checked against the series for iN -lIn ABC quoted by Sykes et al. 
(1965). It is in fact possible to expand equation (12a) further and obtain the terms 
of fifth order in the field variable. 

4. Finite Lattice Method 

For models defined on a square lattice there have been a number of descriptions 
of techniques for obtaining high-temperature series by using only the partition func
tions for rectangular subgraphs (de Neef 1975; de Neef and Enting 1977; Enting 
and Baxter 1977; Enting 1978a). The advantage of such a formulation is that the 
finite lattice partition function can be easily calculated by transfer matrix techniques. 
These techniques can be regarded as re-summations of finite cluster expansions. The 
basic combinatorial results are given by Hijmans and de Boer (1955). Enting (1978a) 
has given explicit expressions for the combinatorial factors in place of the implicit . 
expressions given in earlier work. 

In the Ising and Potts models the existence of a high-temperature expansion in 
terms of rectangles immediately suggests the existence of a similar low-temperature 
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expansion. This is because duality relations in these models show that the graph
counting problems are the same for both models if the high-temperature systems have 
free boundaries and the low-temperature systems have fixed boundaries. 

For more general systems it is necessary to use the results of Section 2 to demonstrate 
the existence of a connected strong graph expansion and then formally re-sum this 
expansion into contributions from rectangles. The combinatorial arguments given by 
de Neef (1975) and de Neef and Enting (1977) then show that there is a combination 
of contributions from rectangles which brings in each connected graph with its correct 
combinatorial weight. 

There are two types of finite lattice methods which have been described. The first 
(de Neef 1975) includes all rectangles whose perimeter (in units of the lattice spacing) 
is less than or equal to P. In fact only rectangles with perimeters P, P - 2, 
P-4 and P-6 actually contribute (Enting 1978a). The second technique (Enting 
and Baxter 1977) uses only three rectangles of dimensions n x n, n x (n - 1) and 
(n-l) x (n-l). In each method the number of series terms is obtained by looking 
at the h(g) factors of connected graphs which are not subgraphs ofthe largest rectangle 
used. If oneis interested in the field grouping then the order of the first series coefficient 
that is given incorrectly will be the number of vertices of the smallest connected graph 
not obtained in the largest rectangle (because of property (iii) of Section 2). The 
number of terms in the temperature grouping will depend on the particular model. 
For Ising and Potts models it is most easily determined by considering the duality 
relation connecting the high-temperature and low-temperature forms of the finite 
lattice method. 

5. Computational Simplifications 

As remarked in the Introduction, one important simplification is to express Z as 
a product of factors rather than to express In Z as a sum. From the recursive definition 
of the h(g) (equation 3) it is clear that if all the Z(g) have integer coefficients then so 
will the h(g). The advantage of working with integers is that many algebraic techniques 
involve numbers greater than the maximum number that can be manipulated directly 
with standard computer hardware, and techniques for extending the precision of 
arithmetic are more straightforward if only integers are involved. One particularly 
simple technique is to perform all arithmetic calculations modulo a suitable large 
prime number and then repeat the calculations modulo other primes. If one has a 
calculation in which the number of intermediate variables used is much greater than 
the number of variables required in the final answer, then this technique can bring 
a considerable reduction in the use of computer memory. This method was used by 
Kim and Enting (1978) in calculating series for the limit of chromatic polynomials. 
Product expansions have been used in graph theoretical problems (Biggs 1974) but 
do not appear to have been applied to problems in physics. 

Another class of simplification applies to calculations of series expansions for the 
magnetization. If one has 

(14) 

where Pn is a polynomial in j;l, then one can change variables to x = 1- j;l and write 

(15) 
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By investigating the temperature grouping one can determine how many of the Pn 

or IPn would be given exactly and to that order in u one can perform the whole calcu
lation in terms of x and u. If only the XO terms are retained then one has series for 
the zero-field partition function, while terms up to Xl lead to series for the spontaneous 
magnetization and terms up to x2 lead to series for the initial susceptibility. Compared 
to working with the Pn polynomials, the use of truncated series in powers of x can 
represent a considerable saving if the full field dependence is not required. 

The two simplifications described above are relevant in most techniquesfor obtain
ing low-temperature expansions. The following technique is a special simplification 
which applies only to the finite lattice method. In this method the partition functions of 
finite rectangles are obtained by transfer matrix techniques. Each possible value of 
the vector and matrix indices corresponds to one of the possible states of a single 
column of a rectangular system. The various components of the vectors are con
strained partition functions, of rectangles, constrained in the sense that the column at 
one end is in the state corresponding to the vector index. The unconstrained partition 
functions are obtained by summing all the components of the vector. Components of 
the vector for the rectangle with one more column are obtained by taking a weighted 
sum of the components of the original vector. The weights are the Boltzmann 
weights for the interactions between the columns, and the weighted sum is equivalent 
to multiplying the original vector by a matrix of Boltzmann weights, that is, the 
transfer matrix. (Each element of the product vector must then be multiplied by the 
Boltzmann weight for the interactions within the column.) 

For Ising models, the states of a column of n spins can be mapped onto a binary 
number in the range 0 to 2n - 1 by making the + / - states correspond to 0/1 binary 
digits. The intercolumn interaction energy between states indexed by } and k will 
depend on the number of positions in which the digits in} and k differ. If one performs 
addition modulo 2 (i.e. a logical exclusive-or) on corresponding digits in} and k then 
the intercolumn energy will depend on} and k only via this exclusive-or function. 
What this means is that, rather than store a 2n x 2n transfer matrix, at most 2n different 
elements need be stored. Apart from this major reduction in storage there is the 
minor advantage that, on computers which provide a bit by bit exclusive-or, calcu
lation of }.xoR.k may actually be faster than the conventional matrix indexing calcula
tion (j-l) x M +k (M = 2n). 

Since the Ashkin-Teller (1943) model can be represented in terms of Ising spins, 
the same techniques as above can be used. The two-site interaction weight depends 
(as in the Ising model) on the number of Is in }.xoR.k. The four-site interaction 
weight depends on the numbers of various pairs of Is in}.xoR.k. Results obtained by 
these techniques will be published elsewhere. 

6. Conclusions 
Of all the methods described above the finite lattice method is by far the most 

powerful for square lattice systems. Even in the earliest calculations (de Neef 1975) 
a 50 % increase in the number of series terms for the three-state Potts model was ob
tained. From the point of view of attacking new problems, the finite lattice method 
has the advantage that it does not depend on a large data base of enumerations of 
subgraph embeddings. The method can be implemented using small self-contained 
programs. The only sophisticated requirement is the ability to perform large amounts 
of algebra, possibly using extended precision integers. 
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Following the development of renormalization group techniques it is clear that, 
if series expansions are to continue to playa useful role in the investigation of critical 
phenomena, it will be in the study of systems which have traditionally been regarded 
as 'difficult'. Possible investigations are higher spin Ising models (to test the lattice
lattice scaling theories of Betts et al. 1971) or Ashkin-Teller models (to test the con
jectures of Enting 1975 and Kadanoff 1977) or Potts models with the 'number of 
states per site' taking noninteger values (to investigate the approach to the q = 1 
percolation limit). Investigations of some of these problems are currently in progress. 
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