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Abstract 

We consider a particular many-body rotational excitation 'P of a spherical self-bound system of 
particles, of the form studied by Lekner (1974). This angular momentum eigenstate is translationally 
invariant and thus is not a spurious state. The energy of 'P is found from first principles to be 
substantially larger than that of the first 2+ excited states of even-even nuclei, with the exception of 
208Pb. The quadrupole moment is negative, the g-factor is approximately Z/A and the lifetime is 
shorter than the single-particle (Weisskopf) value by a factor of the order of A/Z2. It is suggested 
that these states are the finite system rotational analogues of Feynman's phonons and rotons. 

1. Introduction 

Let iP(rl' ... , r A) be a translationally and rotationally invariant ground or vibrational 
state of a self-bound system of A particles, with HiP = Eo iP. It has been shown 
(Lekner 1974; hereinafter referred to as Paper I) that 'P = PiP, where 

A A 

F = 1- L L (Xij + iYi)L f(rij) (L even) (1) 
i=l j=l 

is an eigenstate of L2 and L z with eigenvalues L(L+ 1)h2 and Lh. The wavefunctions 
'P have the same permutation and inversion symmetry as iP, and they are trans­
lationally invariant. These properties hold irrespective of the masses or permutation 
symmetries of the constituent particles, but it is clear that, since equation (1) treats 
each pair of particles in the same way, 'P is best suited to describe rotational states of 
systems composed of particles with nearly identical masses and pair interactions, e.g. 
nuclei and helium microdroplets. We note in passing that Karl and Obryk (1968) and 
Castilho Alcanis and Leal Ferreira (1971) have found only one symmetric L = 2 
eigenstate for the three-body system, namely the state 'P with! = 1. The tr-anslational 
invariance of the 'P considered here guarantees that it is not a spurious state (Elliott 
and Skyrme 1955; Lipkin 1958; Avil"es 1968), i.e. we can be sure that 'P describes a 
genuine internal motion of the self-bound system. 

In Paper I it was further shown that for harmonic pairwise interactions between 
A identical Bose particles, that is, 

A 

H = -(h2/2m) L \/f + V(rl' ... ,rA ) (2a) 
i=l 

with 
(2b) 
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the state tp with! = 1 is an exact energy eigenstate, with 

(3) 

(this equation corrects an error of a factor of ~2 in Paper 1 (eqn 30), arising from the 
same erroneous factor in 1(28)). The purpose of the present paper is to carry the 
analysis of Paper 1 further, by evaluating the expectation values of the energy, 
quadrupole moment, magnetic dipole moment and lifetime of the state with L = 2 
and! = 1. These are then compared with experimental values for nuclei with spherical 
ground states. 

2. Expectation Value of Energy 

We will assume here and in the remainder of this paper that cP 2 has complete 
permutation symmetry, e.g. we neglect the differences between proton and neutron 
masses and interactions. We also assume that the spins are paired up to give zero S, 
because L = 0 as well as J = 0 in the ground state cPo Thus we are discussing 
the nondeformed even-even nuclei. These assumptions also imply that, for example, 
(Xi2) = <yi2) = <zL) where the expectation value is defined in equation (5) below. 

Since tp is an eigenstate of angular momentum with L = 2, it is orthogonal to cP 
and thus the expectation value of the Hamiltonian in the state tp = FcP gives a 
variational bound 

where 

E-Eo ~ J dl ... dA tp*(H-Eo)tp / J dl...dA I tpl2 

= ~~ J dl... dA 1\71 F 12 cP 2 / J dl... dA IF 12 cP 2 

Ah2 <1\71 F 12) 
2m <IFI 2 ) , 

<B) = J dl ... dA BcP2 / J dl ... dA cP 2 

(4) 

(5) 

denotes a ground-state expectation value. The second step in obtaining the expression 
(4) comes from Paper 1(25), and is valid for any Hamiltonian of the form (2a) with 
an interaction V(r1, ... , r A) which is completely symmetric and independent of spins 
and momenta. 

We take! = 1 in the wavefunction (1), since this gives exact energy eigenstates for 
harmonic interactions, and also because this is mathematically the simplest and most 
tractable. A further reason for taking! = 1 is given in Section 6. We find 

(6) 

and 

<IFI 2 ) = tA(A-I)«xi2+yi2)2) 

+ A(A -1)(A -2)«xi2 - yi2)(xi3 - yi3) + 4X12 Y12 X13Y13) 

+tA(A -1)(A -2)(A - 3)«xi2 - Yi2)(X~4 - Y~4) +4X12 Y12 X34Y34) (7) 

(this equation corrects two counting errors in Paper 1(39), namely a factor 2 in the 
three-body term and a factor t in the four-body term). 
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In the remainder of this section, the expression for (I F 12) and hence also that for 
E2 - Eo is reduced to expectation values involving only r ij terms. We first note that 
the energy cannot depend on the azimuthal quantum number. Thus 

must have the same value of (I V1 F 12)/(1 F 12). For 1J120 we find 

(IV1FI2) = 4A(A-l)(rI2) 
and 

(I F 12) = !A(A-l)«3zI2-rI2)2) +A(A-l)(A-2)«3zi2 -rI2)(3zi3-ri3» 

+!A(A-1)(A-2)(A-3)«3zi2 -ri2)(3z~4 -r;4»· 

Thus equations (6), (7), (10) and (11) give the equality 

(8,9) 

(10) 

(11) 

«3zI2 -ri2)2 +2(A -2)(3zi2 -ri2)(3zi3 -ri3)+t(A -2)(A - 3)(3zi2 -ri2)(3z~4 -r~4» 

= -!«Xi2 + yi2)2 +2(A -2){(xi2 - yi2)(xi3 - yi3) +4X12 Y12 X13 Y13} 

+-!(A - 2)(A - 3){(xi2 - Yi2)(X~4 - Y~4) + 4X12 Y12 X34 Y34}). (12) 

We will now prove the equality of the two- and three-body terms in equation (12), 
and thus show the equality of the four-body terms. 

In the two-body terms, use of the facts that 

and 
(13) 

(14) 

(obtained by angular integration) demonstrates equality. The value of the two-body 
term is 

«3zi2- ri2)2) = 4(r12). 

In the three-body term, we use in addition the identity 

to show that 

Thus 

(15) 

(16) 

(17) 

(18) 

In the same way the three-body expectation value on the right-hand side of equation 
(12) is given by (omitting the factor 2(A - 2» 

(19) 

The first term we know from equation (17). The second term we find from (r12) = 

«Xi2+Yi2+zi2)2) and equation (14) to be 

(20) 
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The last term we obtain by expanding <rizri3): 

< z z) l<Z Z) 1(4) X1Z Y13 = 6 r12 r13 -YO r12 . (21) 

These identities reduce the expression (19) to the right-hand side of equation (18), so 
that we have demonstrated the equality of the three-body terms. We may thus put 

«3ziz -riz)(3z;4 -r~4) = ~«xiz - Yiz)(X~4 - Y~4) +4X12 YIZ X34 Y34)' (22) 

By use of the identity 

(23) 

the right-hand side of equation (22) reduces to 

(24) 

The last two terms of this expression we know from equations (20) and (21). We can 
find a relationship between the first two by expanding ri Z r~4: 

<riZr~4) = <Cxiz+Yiz+ziz)(X~4+Y~4+Z;4) = (3XiZX~4 +6xizY~4)' (25) 

Now the left-hand side of equation (22) is equal to 

We thus have, equating (26) to the expression (24), 

We can now evaluate the x and Y terms using equations (25) and (27): 

< Z 2) 1 <2 4 4 2 2 3 2 Z) X12 X34 = 15 r12 - r1Z r13 + r12 r34 , 

The four-body term in equation (12) is thus 

and the variational bound for the excitation energy of the state lJI is 

liZ 2A<ri2) 

(26) 

(28) 

(29) 

m < t r12 + (A - 2)Cr9o 1'12 - ri2 ri3) +i(A - 2)(A - 3)+(31'12 - 6ri2 ri3 + 2riz r~4) . 

(31) 

No approximations have been made to this stage; the result (31) is a rigorous 
expectation value of the energy in the state P. To evaluate this exactly, however, 
we would need to know the two-, three- and four-particle correlation functions of the 
system. In the next section we evaluate (31) in the simplest physically meaningful 
approximation, namely that in which the particles are correlated simply by coexisting 
in a finite system. 
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3. Weak Correlation Approximation 

As a first approximation we assume that the A particles are correlated by virtue of 
the finiteness of the self-bound system, i.e. we assume the system to be characterized 
solely by a number density nCr) (measured relative to the centre of mass of the system). 
The use of this 'weak correlation' approximation is supported to some extent by the 
fact that in nuclei the hard core of the nucleons occupies only about 1 % of the total 
volume (Irvine 1972; de Shalit and Feshbach 1974) so that pair correlations due to 
nucleon-nucleon interactions can be expected not to be dominant in the evaluation 
of the expectation values in the result (31). It turns out that the weak correlation 
approximation is sufficient to make the three-body term 

«3zf 2 - ri 2)(3zi 3 - ri 3» 

nonzero (and in fa~t positive-definite in this approximation), whereas in.a completely 
uncorrelated (infinite) system it would be zero. 

When the system is characterized solely by a single-particle density nCr), depending 
only on the radial distance from the centre of mass, the expectation values needed for 
the evaluation of the energy bound (31) can be found by working in spherical bipolar 
coordinates (Hill 1956). We have 

where 

(33) 

Similarly 
(34) 

The" three-particle correlations are a little more complicated: <ri2 ri3) is given by 

JoOO drl ri n(r1) Jooo dr2 d n(r2) Jooo dr3 r~ n(r3) (ri + r~)(ri + r~) 

(Jooo dr r2 n(r») 3 

(35) 
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Thus the three-body term (18) is positive-<iefinite: 

< 9 4 2 2 > 4[ 4] TO r12 -r12 r13 = 5" r . (36) 

In the weak correlation approximation, the four-particle term <rI2 r~4> factorizes as 

(37) 

It follows that the total four-body term in the expectation value of the energy is zero: 

These results are true for arbitrary radial variation of the density. 
In the weak correlation approximation, the energy of the L = 2 state thus reduces to 

AE = E _ E ~ h2 A[r2] 
2 - 2 0""" m t[r2]2 +(A-l)t[r4f 

(39) 

When A ~ 20, we can write 

(40) 

If we further assume that the system has a uniform density up to a sharp cutoff at 
radius R, we have 

(41) 
so that 

(42) 

In the next section we see how these results may be obtained much more simply by 
breaking the translational invariance of the wavefunction. 

4. Wavefunctions with Broken Translational Invariance 

In Paper I it was pointed out that (i) the orbital angular momentum of a system of 
particles is independent of the choice of origin if and only if the system has zero total 
momentum (i.e. its wavefunction is translationally invariant) and (ii) because of 
the uncertainty principle it is impossible in quantum mechanics to fix the centre of 
mass of a system (at the origin, for example) when the system has zero total momentum. 
Thus the only rigorous way to treat the problem of rotational excitations of a self­
bound system which is not fixed in space by external forces is to deal exclusively with 
translationally invariant wavefunctions". We have done so here (up to this point) thus 
ensuring that the wavefunction considered does correspond to an actual internal 
excitation, and not to a spurious state. 

Having set up the excitation in a translationally invariant way, however, we are 
free to break the translational invariance of that wavefunction without risk of spurious 
states; that is, we are sure from its origins that the translationally variant wavefunction 
represents an internal excitation. We find, in a simple calculation, that breaking the 
translational invariance leads to an error in the energy of order A -1. We are also 
able to readily obtain the quadrupole moment and the lifetime. 
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Consider tp 22 given by equation (8). Since 

and 

where 

we have 

Similarly 

A A A 

t L L X~ = A L x; - A 2 X 2 
i=1 j=1 i=1 

A A A 

L L XijYij = 2A L XiYi -2A2XY, 
i=1 j=1 i=1 

A 

X = A- 1 L Xi etc., 
i= 1 

R = (X, Y,Z), 

t L L (xij+iYij)2 = A L (Xj + iYj)2 _A2(X +iY)2. 
i j j 

t L L (3z;j-r;) = A L (3z; - r;) _A2(3Z2 _R2). 
i j j 

369 

(43) 

(44) 

(45) 

(46) 

Thus when we break the translational invariance by fixing the centre of mass at the 
origin of the coordinate system X = 0, Y = 0, Z = 0, the wavefunctions tp 22 and tp 20 
(equations 8,9) become 

tp~2 = L(xj +iYj)241 == F2241, 
j 

tp~o = L (3zJ - rJ)41 == F 20 41 
j 

(47,48) 

(we have dropped the factor A for simplicity). These states are angular momentum 
eigenstates as before, with energy I1E2 given by (4) above. For the tp~o state 
we have 

(49) 
and 

(50) 

In the weak correlation approximation (and for spherical 41) the second term is zero, 
so we have 

(51) 

Thus the weak correlation approximation gives 

(52) 

Since these expectation values are taken with the centre of mass fixed at the origin, 
we have (I') = [I'] as defined by equation (33), so that the result (52) is the same as 
(40), and differs from (39) by terms of order A-I. We have thus shown that, in the 
weak correlation approximation, breaking translational invariance leads to an error 
of order A -1 only, as could be expected. 

It is also easy to calculate the quadrupole moment Q in the same approximation. 
We have 

Q = e f dl... dA J1 (3z; - r;) I tp~212 / f dl... dA I 'l'~212 
= Ze«3zi - ri)(xi + yi)2)IA«xi + yi)2) 

= -tZeA-1(r~)/(ri), (53) 
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so that the excited state is oblate (pancake-shaped), with a small negative deformation 
parameter, proportional to A- 1• For uniform density up to a cutoff radius R, 
equation (53) becomes 

(54) 

We can also estimate the magnetic dipole moment on the assumption that the 
spin contribution (for even-even nuclei) is negligible. The orbital contribution is, 
irrespective of translational invariance, 

so that 

in the '¥ 22 state. 

z 
J1 = (ej2mc) L <I) ~ (ej2mc)ZA - \L), 

j=1 

fJ = (ehjmc)ZA -1, 

The lifetime of the state is readily obtained from the transition rate (Blatt and 
Weisskopf 1952, p. 595) 

We have 

with 

T(L M) = 8n(L+l) k 2L+ 1 1<fIQ li)1 2 
E, L{(2L+l)!!}2 Ii LM· 

Z 

Q20 = !(5jn)teL: (3zf - rf), 
i= 1 

I i) = N i- 1 L: (3zJ - rJ)cP, 
j 

where Ni and N f are normalization factors. In the weak correlation approximation 
we find 

TE(2,0) = Us Z2e2ks/AIi) <rt)· 
From equations (55) and (41), the linewidth r of the 2+ state is 

(55) 

(56) 

where r w is the Weisskopf width (de Shalit and Feshbach 1974, p. 702). Thus the 
width is large relative to the single-particle value, as befits a collective state. 

5. Effect of Interactions on Correlations 

We. saw in Section 3 that the four-particle term given by equation (30) is zero in 
the weak correlation approximation, i.e. when the particles are correlated solely 
because of the finiteness of the self-bound system. The validity of this 'zeroth? 
approximation nee4s to be examined in more detail, since the four-particle term in 
the exact expression (31) for the energy is multiplied by the factor !(A - 3) relative to 
the three-particle term. 

Let the pair interactions be characterized by a range a. If one particle is placed 
randomly in the system (of radius R) the probability of placing a second particle in 
the range of interaction with the first is of order (a/ R)3. This leads us to expect that, 
for example, 

(57) 
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where <r~2>0 is the expectation value calculated in the weak correlation approxima­
tion. A precise formulation in terms of the pair correlation function g(r) gives (c.f. 
equation 32) 

<~2>0 is the same expression with g = 1. Thus we see that, writing g = 1 + (g -1) 
and using equation (32), 

2 roo dr1 r1 n(r1) roo dr1 "1 n(r1)(r1+r~) +K2 
<2> Jo Jo 0~ 
r12 = 2(fooo drr2n(r»)2 +Ko 

where 

Kn == foOO dr r nCr) foOO ds s n(s) GnCr, s), (60) 

with 1r+o 
Gn(r, s) == dt t{g(t)-1} tn. 

Ir-ol 
(61) 

We can evaluate Gn explicitly for a simple model where g = 0 for r < a and g = 1 
for r > a (a correlation hole arising out of hard core repulsions): 

Gir,s) = 0, 

= -(n+2)-1 {(r+s)n+2 _I r-s In+ 2 }, 

= _(n+2)-1{an+2_1 r_sln+2 }, 

Ir-sl > a; 

Ir-sl < a, r+s < a; 

Ir-sl < a, r+s > a. 

(62a) 

(62b) 

(62c) 

If we further assume that the density nCr) is a constant no up to r = R and zero for 
r> R, we find 

Substitution into equation (59) gives 

while (64) 

where HO(ajR) indicates terms of higher order in ajR. Thus we have justified the 
approximation (57) in detail for a specific case. 

We now see that, for this simple model, the total four-body term appearing in the 
result (31) is of the order of the three-body term multiplied by A(ajR)3. For nuclei 
and helium droplets we have R = roAt, where ro is approximately independent of A. 
It is thus plausible that the neglected four-body term is smaller than the three-body 
term by the factor (ajro)3. For nuclei the core size is of order 0·4 fm, with 
ro ~ 1·2 fm ~ 3a, while for liquid helium a = 2'56A and ro ~ O·85a. Thus we 
expect the above approximations to give reasonable results for nuclei but only a 
rough estimate for helium microdroplets. 
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6. Comparison with Experiment 

The weak correlation approximation gives the formula (39) for the energy I1Ez of 
the 2+ state. For large A, and on the assumption of a fairly sharp surface, this result 
simplifies to I1Ez ~ 7hz/mRz (equation 42). If we put R = roAt with ro = 1·2 fm 
(Irvine 1972), we have for nuclei 

(65) 

This is a large excitation energy for nuclei. For A = 208 we have I1Ez ~ 5·7 MeV, 
while the first 2+ state of z08Pb is at 4·085 MeV. For all other even-even nuclei, the 
first 2 + state is considerably below the bound (65), although the A - t trend is roughly 
followed by spherical nuclei. 

There are (at least) three possible explanations of the above discrepancy: 

(i) correlations may make the four-body term significant, 

(ii) the trial wavefunction we have used needs to be improved, or 

(iii) the first 2 + excited states of most spherical even-even nuclei (except perhaps 
Z08Pb) are not collective rotations of the type described by our wavefunction. 

Since four-particle correlations are difficult to discuss rigorously, we have given a 
heuristic discussion of (i) in the previous section. We can test the explanation (ii) as 
follows. Consider, instead of p~o, the wavefunction 

L (3z; - rJ) fer) cP . 
j 

(66) 

This wavefunction is also an eigenstate of angular momentum with L = 2. We can 
calculate the expectation value of the energy in this state in the weak correlation 
approximation, as we did before withf = 1. We find 

(67) 

where l' denotes dfldr and the expectation values are calculated in the spherical state 
cP as before, with r the distance from the centre of mass. We now optimize with 
respect to f A short variational calculation gives the following differential equation 
to be satisfied by the best f: 

(68) 

Here n is again the number density, and hZqz/2m = I1Ez. For n constant, the regular 
solution is f = r - Z jzCqr) and so f = const. is a good approximation while qr is small, 
i.e. r/R small from the result (42). Thus our trial wavefunction with f = 1 is good 
inside the nucleus. 

We can turn the problem around and ask: what density nCr) has f = 1 as the 
optimum solution? From equation (68) we find 

n'n- 1 = -trqZ, 
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so that 
(69) 

This describes a typical nuclear density variation fairly well, and gives <r2) = 3R2j7, 
whereas a sharp boundary has <r2) = 3R2j5. We thus see that, on both counts, 
f = 1 gives a suitable trial wavefunction, and it is unlikely that the considerable extra 
mathematical complexity of a generalf(r) is warranted. 

We conclude then that the collective rotational states studied here are unlikely to 
be the lowest 2+ excitations of even--even spherical nuclei (except perhaps for 208Pb, 
where the energy is of the right order; from equation (56), the width comes to about 
3sr w whereas experiment gives approximately sr w (Lewis 1971, p. 266». This con­
clusion has been reached from first principles. 

7. Physical Significance of Proposed States 

It was conjectured in Paper I that these new states represented surface oscillations, 
on the basis of the similarity between the effective moment of inertia, 

(70) 

and the irrotational moment of inertia of an ellipsoid of constant density deformed 
along the x axis, rotating about the z axis (Gustafson 1955; Katz 1962), namely 

(71) 

(in equation (71) the expectation values are to be taken in the rotating state). However, 
the similarity of equation (70) to (71) is misleading, for two reasons: firstly because 
(70) is zero in the weak correlation approximation, and secondly because the con­
siderations of the next paragraph point to a different physical interpretation. 

We have seen that on breaking translational invariance of the tp20 state we get the 
wavefunction 

tp;O = L (3z; - r;) <l> • 
j 

This wavefunction has the same form that Feynman (1954, 1972) proposed for excita­
tions in liquid helium, namely tp = F<l> with F = 'J:..jf(rj). The analogy is closer than 
this similar form however. Feynman showed that, in the bulk, the optimum f is a 
plane wave exp(ik.r). Now the plane wave can be expanded in angular momentum 
eigenfunctions as 

00 

exp(ikr cos 8) = L (2L + 1 )iL jL( kr) P L( cos 8) 
L=O 

and we thus see that the L = 2 component of Feynman's wavefunction is 

L Mkr)Picos 8)<l>, 
j 

(72) 

which we showed to be the optimum wavefunction of the type (66). For small k, 
the form (72) is just our tp;o. Thus the proposed states are finite-system, angular 
momentum projections of Feynman's excitations. 
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